Real Time Process Algebra with Infinitesimals

  • J. C. M. Baeten
  • J. A. Bergstra
Part of the Workshops in Computing book series (WORKSHOPS COMP.)

Abstract

We consider a model of the real time process algebra of [1,2,3] based on the nonstandard reals. As a subalgebra, we obtain a theory in which the urgent actions of ATP, TiCCS, TeCCS can be modeled.

Keywords

Encapsulation Prefix Rounded Klop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C.M. Baeten & J.A. Bergstra. Real time process algebra. Formal Aspects of Computing 1991;3:142–188.CrossRefGoogle Scholar
  2. 2.
    J.C.M. Baeten & J.A. Bergstra. Discrete time process algebra. In: W.R. Cleaveland (ed.), Proc. CONCUR’92, Stony Brook. Springer Verlag 1992, pp. 401–420 (Lecture Notes in Computer Science no. 630).Google Scholar
  3. 3.
    J.C.M. Baeten & J.A. Bergstra. Real space process algebra. Formal Aspects of Computing 1993; 5:481–529.Google Scholar
  4. 4.
    J.C.M. Baeten, J.A. Bergstra & J.W. Klop. Syntax and defining equations for an interrupt mechanism in process algebra. Fund. Inf. 1986; IX: 127–168.Google Scholar
  5. 5.
    J.C.M. Baeten & W.P. Weijland. Process algebra. Cambridge Tracts in Theor. Comp. Sci. 18, Cambridge University Press 1990.CrossRefGoogle Scholar
  6. 6.
    J.A. Bergstra & J.W. Klop. Process algebra for synchronous communication. Information & Control 1984; 60:109–137.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    L. Chen. Timed processes: models, axioms and decidability. Ph.D. thesis, University of Edinburgh 1993.Google Scholar
  8. 8.
    W.J. Fokkink & A.S. Klusener. Real time process algebra with prefixed integration. Report CS-R9219, CWI, Amsterdam 1992.Google Scholar
  9. 9.
    A.S. Klusener. Models and axioms for a fragment of real time process algebra. Ph.D. Thesis, Eindhoven University of Technology 1993.MATHGoogle Scholar
  10. 10.
    W.A.J. Luxemburg. Non-standard analysis (lectures on A. Robinson’s theory of infinitesimals and infinitely large numbers). California Institute of Technology, Pasadena 1962.Google Scholar
  11. 11.
    F. Moller & C. Tofts. A temporal calculus of communicating systems. In: J.C.M. Baeten & J.W. Klop (eds.), Proc. CONCUR’90, Amsterdam. Springer Verlag 1990, pp. 401–415 (Lecture Notes in Computer Science no. 458).Google Scholar
  12. 12.
    F. Moller & C. Tofts. Behavioural abstraction in TCCS. In: W. Kuich (ed.), Proc. ICALP 92, Vienna. Springer Verlag 1992 (Lecture Notes in Computer Science 623).Google Scholar
  13. 13.
    X. Nicollin & J. Sifakis. The algebra of timed processes ATP: theory and application (revised version). Report RT-C26, IMAG Grenoble 1991.Google Scholar
  14. 14.
    G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN- 19, Comp. Sci. Dept., Aarhus University 1981.Google Scholar
  15. 15.
    A. Robinson. Non-standard analysis. Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam 1966.Google Scholar
  16. 16.
    Wang Yi. Real-time behaviour of asynchronous agents. In: J.C.M. Baeten & J.W. Klop (eds.), Proc. CONCUR’90, Amsterdam, Springer Verlag 1990, pp. 502–520 (Lecture Notes in Computer Science 458).Google Scholar

Copyright information

© British Computer Society 1995

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations