Predictive Control

  • Ming Rao
  • Qijun Xia
  • Yiqun Ying
Part of the Advances in Industrial Control book series (AIC)

Abstract

The major difficulties in paper-making process control may arise from the following reasons: (1) some process states are unmeasurable; (2) there are long time delays; (3) there are significant parameter variations; (4) there are strong couplings between basis weight and moisture content control; (5) there are measurable and unmeasurable process disturbances. In this chapter, we will introduce three algorithms to solve these problems.

Keywords

Corn Covariance Steam Mold Straw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison B.J., Dumont G.A. and Novak L.H. Multi-input adaptive-predictive control of kamyr digester chip level. Canadian J. of Chem. Eng. 1991; 69: 111–119CrossRefGoogle Scholar
  2. Åström K.J. Computer control of a paper machine — an application of linear stochastic control theory. IBM J. Res. Dev. 1967; 11: 389–405Google Scholar
  3. Åström K.J., Borisson U., Ljung L. and Wittenmark B. Theory and application of self-tuning regulators. Automatica 1977; 13: 457–476CrossRefGoogle Scholar
  4. Bialkowski W. L. Applications of Kalman filters to the regulation of dead time processes. IEEE Trans. Autom. Contr. 1983; AC-28:400–406CrossRefGoogle Scholar
  5. Borrison U. Self-tuning regulators: industrial application and multivariable theory. Report 7513, Department of Automatic Control, Lund Institute of Technology, 1975Google Scholar
  6. Cegrell T. and Hedquist T. Successful adaptive control of paper machines. Automatica 1975; 11: 53–59CrossRefGoogle Scholar
  7. Chang C.B. and Tabaczynski J.A. Application of state estimation to target tracking. IEEE Trans. Autom. Contr. 1984; AC-29:98–109CrossRefGoogle Scholar
  8. Cheng C.M. Linear quadratic-model algorithmic control method: a controller design method combining the linear quadratic model algorithmic control algorithm. Industrial & Engineering Chemistry Research 1989; 28: 178–186CrossRefGoogle Scholar
  9. Clarke D.W., Hodgson A.J.F. and Tuffs P.S. Offset problem and k-incremental predictors in self-tuning control. IEE Proc 1983; 130-D:217–225Google Scholar
  10. Culter G.R. and Remarker B.L. Dynamic matrix control — algorithm. JACC, WP5-B, San Francisco, 1980 A computer control algorithm. JACC, WP5-B, San Francisco, 1980Google Scholar
  11. De Keyser R.M.C., Van de Velde P.G.A. and Dumortier F.A.G. Comparative study of self-adaptive long-range predictive control methods. Automatica 1988; 24: 149–163CrossRefGoogle Scholar
  12. Deyst J.J.Jr. and Price C.F. Conditions for asymptotic stability of the discrete minimum-variance linear estimator. IEEE Trans. Autom. Contr. 1968;AC-13:702–705Google Scholar
  13. Fagin S.L. Recursive linear regression theory, optimal filter theory, and error analysis of optimal system. IEEE International Convention Record 1964; 12: 216–240Google Scholar
  14. Fitzgerald R.L. Divergence of the Kalman filter. IEEE Trans. Autom. Contr. 1971; AC-16:736–747Google Scholar
  15. Kalman R.E. and Bucy R.S. New results in linear filtering and prediction theory. Trans. ASME J. Basic Engng 1961; 83: 95–108Google Scholar
  16. Koivo H.N. and Tanttu T.J. Self-tuning controllers: non-square systems and convergence. Int. J. System Sci. 1985; 16: 981–1002CrossRefGoogle Scholar
  17. Marchetti J.L, Mellichamp D.A. and Seborg D.E. Predictive Control Based on the Discrete Convolution Model. I & EC Process Des. Dev. 1983; 22: 488–495CrossRefGoogle Scholar
  18. Martin G.D. Long range predictive control. J. AIChE 1981; 27: 748–753CrossRefGoogle Scholar
  19. Masreliez C.J. and Martin R.D. Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Autom. Contr. 1977; AC-22:361–371Google Scholar
  20. Maybeck P.S. Stochastic models, estimation, and control. Vol. 1-3, Academic Press New York, 1982Google Scholar
  21. Mayne D.Q., Astrom K.J. and Clark J.M.C. A new algorithm for recursive estimation of parameters in controlled ARMA processes. Automatica 1984; 20: 751–760CrossRefGoogle Scholar
  22. Ohap R.H. and Stubberud A.R. Adaptive minimum variance estimation in discrete time linear systems. In: Control and Dynamic Systems, C.T. Leondes, editor, Vol 12. Academic Press, New York, 1976, pp 583–642Google Scholar
  23. Polak E. Computational methods in optimization; a unified approach. Series in Mathematics in Science and Engineering, Vol. 77, Academic Press, New York, 1971Google Scholar
  24. Richalet J., Rault A., Testud J.L. and Papon J. Model predictive heuristic control: applications to industrial processes. Automatica 1978; 14: 413–428CrossRefGoogle Scholar
  25. Rouhani R. and Mehra R.K. Model algorithmic control (MAC): basic theoretical properties. Automatica 1982; 18: 401–414CrossRefGoogle Scholar
  26. Shead R.P. Computer control improves coated boxboard machine productivity. Pulp and Paper 1979; 53 (2): 130–133Google Scholar
  27. Shellenbarger J.C. Estimation of con variance parameter for an adaptive Kalman filter. Proc National Electronics Conference, 1966, pp 698–702Google Scholar
  28. Sikora R.F. and Bialkowski W.L. A self-tuning strategy for moisture control in paper making. Proc American Control Conference, San Diego, California, 1984, pp 54–60Google Scholar
  29. Sorenson H.W. and Sacks J.E. Recursive fading memory filtering. Information Sciences 1971; 3: 101–119CrossRefGoogle Scholar
  30. Synder D.L. Information processing for observed jump processes. Information and Control 1973; 22: 69–75CrossRefGoogle Scholar
  31. Thorp B.A. (editor) Paper Machine Operations. In: Pulp and Paper Manufacture (3rd ed.), Vol.7, 1991Google Scholar
  32. Tsai C. and Kurz L. An adaptive robustizing approach to Kalman filtering. Automatica 1983; 19: 279–288CrossRefGoogle Scholar
  33. Tung L.S. Sequential predictive control of industrial processes. Proc American Control Conference, San Francisco, California, 1983, pp 349–355Google Scholar
  34. Tze-Kwarfung P. and Grimble M.J. Dynamic ship positioning using a selftuning Kalman filter. IEEE Trans. Autom. Contr. 1983; AC-28:339–350Google Scholar
  35. Wallace B.W. Process control systems: harnessing run away energy. PIMA 1980; 62: 22–26Google Scholar
  36. Wilhelm E.G. Self-tuning strategies: multi-faceted solution to paper machine control problem. Presented at ISA Spring Symp., Columbus, Ohio, 1982Google Scholar
  37. Xia Q. Reliable control theory and application in industrial processes. Ph.D. dissertation, Zhejiang University, Hangzhou, PRC, 1989Google Scholar
  38. Xia Q., Rao M., Shen X. and Zhu H. Adaptive control of a paperboard machine. Pulp & Paper Canada 1994; (in press)Google Scholar
  39. Xia Q., Rao M., Ying Y. and Shen X. Adaptive fading Kalman with applications. Automatica 1994; (in press)Google Scholar
  40. Xia Q., Rao M. and Qian J. Model algorithmic control of paper machines. Proc of the Second IEEE Conference on Control Applications, Vacouver, Canada, 1993, pp 203–208Google Scholar
  41. Ydstie B.E. and Co T. Recursive estimation with adaptive divergence control. IEE Proceedings 1985; 132D: 124–130Google Scholar

Copyright information

© Springer-Verlag London Limited 1994

Authors and Affiliations

  • Ming Rao
    • 1
  • Qijun Xia
    • 1
  • Yiqun Ying
    • 1
  1. 1.Department of Chemical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations