Positron Emission Tomography (PET) in Acute Ischemic Stroke: Pathophysiological and Clinical Implications

  • J. C. Baron


Experimental studies in animal stroke models have shown that, at variance with global ischemia from cardiac arrest, the abrupt occlusion of a cerebral artery (e.g. the trunk of the middle cerebral artery, MCA) triggers complex regulatory mechanisms that tend to compensate for the decrease in perfusion pressure, such as distal bed vasodilatation and subsequent ‘opening’ of pial anastomoses. This results in a gradient of reduction in cerebral blood flow (CBF) and tissue oxygenation from the ischemic core, where perfusion is most reduced or may even be arrested, towards the borders of the affected vascular territory, where CBF may be only mildly reduced (oligemia) or even normal (autoregulated) (Pulsinelli 1992). The concept of the ‘ischemic penumbra’ dictates that, in each block of tissue, the level of residual perfusion will determine to what degree the cascade of ischemic-dependent biochemical events is triggered.


Positron Emission Tomography Cerebral Blood Flow Acute Stroke Positron Emission Tomography Study Cerebral Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Grotta JC, Brownell GL, Taveras JM (1981) Positron imaging in ischemic stroke disease using compounds labelled with oxygen-15. Arch Neurol 38: 537–543PubMedGoogle Scholar
  2. Ackerman RH, Lev MH, MacKay BC, Katz PM, Babikian VL, Alpert NM, Correia JA, Panagos PD, Senda M (1989) PET studies in acute stroke: findings and relevance to therapy. J Cerebr Blood Flow Metab 9 (Suppl 1): S359Google Scholar
  3. Baron JC (1991) Testing cerebral function: will it help the understanding or diagnosis of central nervous system disease? Exploring brain functional anatomy with positron tomography. Wiley, Chichester (Ciba Foundation symposium 163 ): 250–264Google Scholar
  4. Baron JC, Bousser MG, Comar D, Castaigne P (1980) Crossed cerebellar diaschisis in human supratentorial brain infarction. Trans Am Neurol Assoc 105: 459–461Google Scholar
  5. Baron JC, Rougemont D, Bousser MG, Lebrun-Grandie P, Iba- Zizen MT, Chiras J (1983) Local CBF, oxygen extraction fraction (OEF) and CMROz: prognostic value in recent supratentorial infarction in humans. J Cerebr Blood Flow Metab 3 (Suppl 1): S1–S2CrossRefGoogle Scholar
  6. Baron JC, D’Antona R, Pantano P, Serdaru M, Samson Y, Bousser MG (1986) Effects of thalamic stroke on energy metabolism of the cerebral cortex. Brain 109: 1243–1259PubMedCrossRefGoogle Scholar
  7. Baron JC, Samson Y, Pantano P, Chiras J, Derouesne C, Bousser MG (1987) Interrelationships of local CBF, OEF and CMR02 in ischemic areas with variable outcome: further PET studies in humans. J Cerebr Blood Flow Metab 7 (Suppl 1): 41Google Scholar
  8. Baron JC, Frackowiak RSJ, Herholz K, Jones T, Lammertsma AA, Maaoyer B, Wienhard K (1989) Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cerebr Blood Flow Metab 9: 723CrossRefGoogle Scholar
  9. Dobkin JA, Levine RL, Lagoze HL, Dulli DA, Nickles RJ, Rowe BR (1989) Evidence for transhemispheric diaschisis in unilateral stroke. Arch Neurol 46: 1333–1336PubMedGoogle Scholar
  10. Feeney D, Baron JC (1986) Diaschisis. Stroke 17: 817–830PubMedCrossRefGoogle Scholar
  11. Hakim AM, Evans AC, Berger L, Kuwabara H, Worsley K, Marchal G, Biel C, Pokrupa R, Diksic M, Meyer E, Gjedde A, Marret S (1989) The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cerebr Blood Row Metab 9: 523–534CrossRefGoogle Scholar
  12. Heiss WD (1992) Experimental evidence of ischemic thresholds and functional recovery Stroke 23: 1668–1672PubMedCrossRefGoogle Scholar
  13. Heiss WD, Huber M, Fink GR, Herholz K, Pietryk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cerebr Blood Flow Metab 12: 193–203CrossRefGoogle Scholar
  14. Karbe H, Herholz K, Szelies B, Pawlik G, Wienhard K, Heiss WD (1989) Regional metabolic correlates of token test results in cortical and subcortical left hemispheric infarction. Neurology 39: 1087–1088Google Scholar
  15. Lassen NA, Fieschi C, Lenzi GL (1991) Ischemic penumbra and neuronal death: comments on the therapeutic window in acute stroke with particular reference to thrombolytic therapy. Cerebrovasc Dis 1 (Suppl l): 32–35CrossRefGoogle Scholar
  16. Marchal G, Serrati C, Rioux P, Petit-Taboue MC, Viader F, De La Sayette V, Le Doze F, Lochon P, Derlon JM, Orgogozo JM, Barron JC (1993a) PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 341: 925–926PubMedCrossRefGoogle Scholar
  17. Marchal G, Beaudouin V, Furlan M, Serrati C, Viader F, Le Doze F, De La Sayette V, Rioux P, Lochon P, Derlon JM, Baron JC (1993b) Correlations of low flow and metabolic impairment indices with neurological outcome and infarct size: a PET study in the acute stage of stroke. J Cerebr Blood Plow Metab 13 (Suppl 1): S347Google Scholar
  18. Marchal G, Beaudouin V, Furlan M, Lochon P, Onfroy MC, Petit-Taboue MC, Derlon JM, Baron JC (1993c) Demonstration of metabolically deteriorating ischemic tissue within the eventually infarcted volume by pixel integrationthreshold analysis: an acute and follow-up PET study J Cerebr Blood Flow Metab 13 (Suppl 1): S274Google Scholar
  19. Metter EJ, Kempler D, Jackson C et al. (1989) Cerebral glucose metabolism in Wernicke’s, Broca’s and conduction aphasia. Arch Neurol 46: 27–34PubMedGoogle Scholar
  20. Minematsu K, Yamaguchi T, Omae T (1992) ’Spectacular shrinking deficit’: rapid recovery from a major hemispehric syndrome by migration of an embolus. Neurology 42:157–162Google Scholar
  21. Nelson CW, Wei Ep, Povlishock JT, Kontos HA, Moskowitz MA (1992) Oxygen radicals in cerebral ischemia. Am J Physiol (Heart Circ Physiol) 263: H1356–1362Google Scholar
  22. Pappata S, Fiorelli M, Rommel T, Hartmann A, Dettmers C, Yamaguchi T, Chabriat H, Poline JB, Crouzel C, Di Giambernardino L, Baron JC (1993) PET study of changes in local brain hemodynamics and oxygen metabolism after unilateral middle cerebral artery occlusion in baboons. J Cerebr Blood Flow Metab 13: 416–424CrossRefGoogle Scholar
  23. Powers WJ, Grubb RL, Raichle ME (1984) Physiological response to focal cerebral ischemia in humans. Ann Neurol 16: 546–557PubMedCrossRefGoogle Scholar
  24. Powers WJ, Grubb RL, Darriet D, Raichle ME (1985a) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cerebr Blood Flow Metab 5: 600–608CrossRefGoogle Scholar
  25. Powers WJ, Grubb RL, Baker RP, Mintun MA, Raichle ME (1985b) Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm. J Neurosurg 62: 539–546PubMedCrossRefGoogle Scholar
  26. Pulsinelli W (1992) Pathophysiology of acute ischaemic stroke. Lancet 339: 16–19CrossRefGoogle Scholar
  27. Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A (1992) Type and extent of hemispheric brain infarction and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 42: 289–298PubMedGoogle Scholar
  28. Sette G, Baron JC, Mazoyer B, Levasseur M, Pappata S, Crouzel C (1989) Local brain hemodynamics and oxygen metabolism in cerebrovascular disease: positron emission tomography. Brain 112: 931–951PubMedCrossRefGoogle Scholar
  29. Touzani O, Young AR, Marchal G, Beaudouin V, Ravenel N, Mezenge F, Rioux P, Derlon JM, Baron JC, Mackenzie ET (1993) Progression of severely hypometabolic tissue after permanent occlusion of the middle cerebral artery (MCAO): PET studies in anaesthetized baboons. J Cerebr Blood Flow Metab 13 (Suppl 1): S797Google Scholar
  30. Wardlaw JM, Dennis MS, Lindley RI, Warlow CP, Sandercock PAG, Sellar R (1993) Does early reperfusion of a cerebral infarct influence cerebral infarct swelling in the acute stage or the final clinical outcome? Cerebrovasc Dis 3: 86–93CrossRefGoogle Scholar
  31. Wise RJS, Bernardi S, Prackowiak RS], Legg NJ, Jones T (1983) Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 106: 197–222PubMedCrossRefGoogle Scholar
  32. Wise RJS, Gibbs J, Frackowiak RSJ, Marshall J, Jones T (1986) No evidence for transhemispheric diaschisis after human cerebral infarction. Stroke 17: 853–860PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1995

Authors and Affiliations

  • J. C. Baron

There are no affiliations available

Personalised recommendations