Skip to main content

Autoregulation, Hypertension and Regulation of the Cerebral Circulation

  • Chapter
Brain Ischemia
  • 250 Accesses

Abstract

Acute and chronic increases in blood pressure have important effects on cerebral blood vessels. In recent years, new concepts and hypotheses have been proposed concerning the mechanisms of autoregulation during acute increases in blood pressure, adaptive changes of cerebral blood vessels during chronic hypertension, and mechanisms that ultimately lead to cerebral vascular events that are typical of chronic hypertension. Some of these new concepts and hypotheses will be reviewed, as well as well accepted concepts about the effects of hypertension on cerebral blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumbach GL, Heistad DD (1985) Heterogeneity of brain blood flow and permeability during acute hypertension. Am J Physiol: Heart Circ Physiol 18: H629–H637

    Google Scholar 

  • Baumbach GL, Heistad DD (1988) Cerebral circulation in chronic arterial hypertension. Hypertension 12: 89–95

    PubMed  CAS  Google Scholar 

  • Baumbach GL, Heistad DD (1989) Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13: 968–972

    PubMed  CAS  Google Scholar 

  • Baumbach GL, Heistad DD (1991) Adaptive changes in cerebral blood vessels during chronic hypertension. J Hypertension 9: 987–991

    Article  CAS  Google Scholar 

  • Baumbach GL, Dobrin PB, Hart MN, Heistad DD (1988) Mechanics of cerebral arterioles in hypertensive rats. Circ Res 62: 56–64

    PubMed  CAS  Google Scholar 

  • Baumbach GL, Siems JE, Heistad DD (1991) Effects of local reduction in pressure on distensibility and composition of cerebral arterioles. Circ Res 68: 338–35

    PubMed  CAS  Google Scholar 

  • Bill A, Linder J (1976) Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Bohlen HG, Harper SL (1984) Evidence of myogenic vascular control in the rat cerebral cortex. Circ Res 55: 554–559

    PubMed  CAS  Google Scholar 

  • Burger SK, Saul RF, Selhorst JB, Thurston SE (1991) Transient monocular blindness caused by vasospasm. New Engl J Med 325: 870–873

    Article  PubMed  CAS  Google Scholar 

  • Byrom FB (1954) The pathogenesis of hypertensive encephalopathy and its relation to the malignant phase of hypertension. Experimental evidence from the hypertensive rat. Lancet 2: 201–211

    Article  Google Scholar 

  • Christensen K (1991) Reducing pulse pressure in hypertension may normalize small artery structure. Hypertension 18: 722–727

    PubMed  CAS  Google Scholar 

  • Coyle P, Heistad DD (1986) Blood flow through cerebral collateral vessels in hypertensive and normotensive rats. Hypertension 8: 1167–1171

    Google Scholar 

  • Coyle P, Heistad DD (1987) Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke 18: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Darne B, Girerd X, Safar M, Cambien F, Guize L (1989) Pulsatile versus steady component of blood pressure: a cross-sectional anlaysis and a prospective analysis on cardiovascular mortality. Hypertension 13: 392–400

    PubMed  CAS  Google Scholar 

  • Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66: 8–17

    PubMed  CAS  Google Scholar 

  • Faraci FM, Baumbach GL, Heistad DD (1989) Myogenic mechanisms in the cerebral circulation. J Hypertension 7:S61S65

    Google Scholar 

  • Faraci FM, Lopez JAG, Breese K, Armstrong ML, Heistad DD (1991) Effect of atherosclerosis on cerebral vascular responses to activation of leukocytes and platelets in monkeys. Stroke 22: 790–796

    Article  PubMed  CAS  Google Scholar 

  • Folkow B, Hallback M, Lundgren Y, Sivertsson R, Weiss L (1973) Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in spontaneously hypertensives. Circ Res 32(Suppl I):I2—1–16

    Google Scholar 

  • Fujii K, Heistad DD, Faraci FM (1991) Flow-mediated dilatation of the basilar artery in vivo. Circ Res 69: 697–705

    PubMed  CAS  Google Scholar 

  • Hajdu MA, Heistad DD, Baumbach GL (1991) Effects of antihypertensive therapy on mechanics of cerebral arterioles in rats. Hypertension 17: 308–316

    PubMed  CAS  Google Scholar 

  • Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60: 102–107

    PubMed  CAS  Google Scholar 

  • Harper SL, Bohlen HG (1984) Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6: 408–419

    PubMed  CAS  Google Scholar 

  • Hart MN, Heistad DD, Brody MJ (1980) Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension 2: 419–423

    PubMed  CAS  Google Scholar 

  • Heistad DD, Baumbach GL (1992) Cerebral vascular changes during chronic hypertension: good guys and bad guys. J Hypertens 10: 571–575

    Article  Google Scholar 

  • Heistad DD, Kontos HA (1983) Cerebral circulation. In: Abboud FM, Shepherd JT (eds) Handbook of physiology: the cardiovascular system, Vol III. American Physiological Society, Bethesda, pp 137–182

    Google Scholar 

  • Heistad DD, Marcus ML (1979) Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circ Res 45: 331–338

    PubMed  CAS  Google Scholar 

  • Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets cause direct contraction and endotheliumdependent relaxation of isolated canine coronary arteries: role of serotonin, thromboxane A2, and adenine nucleotides. J Clin Invest 78: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495

    PubMed  CAS  Google Scholar 

  • Jones JV, Fitch W, MacKenzie ET, Strandgaard S, Harper AM (1976) Lower limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res 39: 555–557

    PubMed  CAS  Google Scholar 

  • Katusic ZS, Shepherd JT, Vanhoutte PM (1987) Endotheliumdependent contraction to stretch in canine basilar arteries. Am J Physiol: Heart Circ Physiol 21: H671–H673

    Google Scholar 

  • Kety SS, Hafkenschiel JH, Jeffers WA, Leopold IH, Shenkin HA (1948) The blood flow, vascular resistance, and oxygen consumption of the brain in essential hypertension. J Clin Invest 27: 511–514

    Article  CAS  Google Scholar 

  • Kontos HA (1985) Oxygen radicals in cerebral vascular injury. Circ Res 57: 508–516

    PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol: Heart Circ Physiol 3: H582–H591

    Google Scholar 

  • McCarron JG, Osol G, Halpern W (1989) Myogenic responses are independent of the endothelium in rat pressurized posterior cerebral arteries. Blood Vessels 26: 315–319

    PubMed  CAS  Google Scholar 

  • Mancia G, Parati G, Pomidossi G, Casadei R, DiRenzo M, Zanchetti A (1986) Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension 8: 147–153

    PubMed  CAS  Google Scholar 

  • Mayhan WG (1990) Impairment of endothelium-dependent dilatation of basilar artery during chronic hypertension. Am J Physiol: Heart Circ Physiol 28: H1455–1462

    Google Scholar 

  • Mayhan WG, Heistad DD (1986) Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res 59: 216–220

    PubMed  CAS  Google Scholar 

  • Mayhan WG, Faraci FM, Heistad DD (1987) Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol: Heart Circ Physiol 22: H1435–H1440

    Google Scholar 

  • Mayhan WG, Faraci FM, Heistad DD (1988) Responses of cerebral arterioles to adenosine 5-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension 12: 556–561

    PubMed  CAS  Google Scholar 

  • Meyer JS, Waltz AG, Gotoh F (1960) Pathogenesis of cerebral vasospasm in hypertensive encephalopathy: II. The nature of increased irritability of smooth muscle of pial arterioles in renal hypertension. Neurology 10: 859–867

    Google Scholar 

  • Meyers KM, Holmsen H, Seachord CL (1982) Comparative study of platelet dense granule contents. Am J Physiol: Reg Int Comp Physiol 12: R454–R461

    Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142

    PubMed  CAS  Google Scholar 

  • Mulvany MJ (1991) Abnormalities of resistance vessel structure in essential hypertension: are these important? Clin Exp Pharmacol Physiol 18: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Nowicki JP, Duval D, Poignet H, Scotton B (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204: 339–340

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein EH, Nichols AJ (1989) Rabbit polymorphonuclear neutrophils elicit endothelium-dependent contraction in vascular smooth muscle. Circ Res 65: 917 - 924

    PubMed  CAS  Google Scholar 

  • Rosenblum WI, Nelson GH, Povlishock JT (1987) Laserinduced endothelial damage inhibits endotheliumdependent relaxation in the cerebral microcirculation of the mouse. Circ Res 60: 169–176

    PubMed  CAS  Google Scholar 

  • Rubanyi GM (1988) Endothelium-dependent pressureinduced contraction of isolated canine carotid arteries. Am J Physiol: Heart Circ Physiol 24: H783–H788

    Google Scholar 

  • Sadoshima S, Busija D, Brody M, Heistad DD (1981) Sympathetic nerves protect against stroke in stroke-prone hypertensive rats. Hypertension 3:1-124-1-127

    Google Scholar 

  • Schmid-Schonbein GW, Seiffge D, DeLano FA, Shen K, Zweifach BW (1991) Leukocyte counts and activation in spontaneously hypertensive and normotensive rats. Hypertension 17: 323–330

    PubMed  CAS  Google Scholar 

  • Strandgaard S, MacKenzie ET, Sengupta D, Rowam JO, Lassen NA, Harper AM (1974) Upper limit of autoregulation in cerebral blood flow in the baboon. Circ Res 34: 435–550

    PubMed  CAS  Google Scholar 

  • Tamaki K, Sadoshima S, Baumbach GL, Iadecola C, Reis DJ, Heistad DD (1984) Evidence that disruption of the bloodbrain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy. Hypertension 6:1-75-1-81

    Google Scholar 

  • Wei EP, Kontos HA (1984) Increased venous pressure causes myogenic constriction of cerebral arterioles during local hyperoxia. Circ Res 55: 249–252

    PubMed  CAS  Google Scholar 

  • Werber AH, Heistad DD (1984) Effects of chronic hypertension and sympathetic nerves on the cerebral microvasculature of stroke-prone spontaneously hypertensive rats. Circ Res 55: 286–294

    PubMed  CAS  Google Scholar 

  • Werber AH, Heistad DD (1985) Diffusional support of arteries. Am J Physiol: Heart Circ Physiol 17: H901–H906

    Google Scholar 

  • Williams JK, Baumbach GL, Armstrong ML, Heistad DD (1989) Hypothesis: vasoconstriction contributes to amaurosis fugax. J Cerebr Blood Flow Metab 9: 111–116

    Article  CAS  Google Scholar 

  • Winn HR, Welsh JE, Rubio R, Berne RM (1980) Brain adenosine production in rat during sustained alteration in systemic blood pressure. Am J Physiol: Heart Circ Physiol 8: H636–H641

    Google Scholar 

  • Yamamoto S, Golanov EV, Berger SB, Reis DJ (1992) Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat. J Cerebr Blood Flow Metab 12: 717–726

    Article  CAS  Google Scholar 

  • Yang ST, Mayhan WG, Faraci FM, Heistad DD (1991) Mechanisms of impaired endothelium-dependent cerebral vasodilatation in response to bradykinin in hypertensive rats. Stroke 22: 1177–1182

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Heistad, D.D. (1995). Autoregulation, Hypertension and Regulation of the Cerebral Circulation. In: Caplan, L.R. (eds) Brain Ischemia. Springer, London. https://doi.org/10.1007/978-1-4471-2073-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2073-5_24

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2075-9

  • Online ISBN: 978-1-4471-2073-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics