Large-Signal Models

  • Robert J. Trew

Abstract

Many electronic devices, such as power amplifiers, oscillators, mixers, switches, etc., operate in the large-signal regime. The term large-signal refers to the magnitude of the RF signal relative to the operating bias. Therefore, die magnitude of the RF signal that produces large-signal effects can vary widely, depending upon the type of device and the bias conditions under which the device operates. For example, semiconductor power diodes may be operated with 100’s or 1000’s of volts applied bias, sustaining 10’s to 100’s of volts of RF or operating signal before large-signal effects become significant; whereas, a submicron quantum well device may be in the large-signal regime with only microvolt or millivolt RF voltage applied.

Keywords

Microwave Recombination GaAs Gallium Arsenide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandler, J.W., Zhang, Q.J., and Chen. S.H., “Efficient large-signal FET parameter extraction using harmonics,” IEEE Trans. Microwave Theory Tech., 1989, MTT-37 pp. 2099–2108.CrossRefGoogle Scholar
  2. 2.
    Bilbro, G.L., Steer, M.B., Trew, R.J., and Skaggs, “Extraction of the parameters of equivalent circuits of microwave transistors using tree-annealing,” IEEE Trans Microwave Theory Tech., 1990, 33, pp. 1711–1718.CrossRefGoogle Scholar
  3. 3.
    Vaitkus, R.L., “Uncertainty in the values of GaAs MESFET equivalent circut elements extracted from measured two-port scattering parameters,” Proc. IEEE/Cornell Conf. High Speed Semiconductors, 1983, pp. 301–308.Google Scholar
  4. 4.
    Dambrine, G, Cappy, A., Heliodore, F., and Playez, E, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., 1988, 30, pp. 1151–1159.CrossRefGoogle Scholar
  5. 5.
    Trew, R.J., “Equivalent circuits for high frequency transistors,” Proc. IEEE/Cornell Conf. High Speed Semiconductors, 1987, pp. 199–208.Google Scholar
  6. 6.
    Shockley, W., “A unipolar ‘field-effect’ transistor,” Proc. IRE, 1952, 40, pp. 1365–1376.CrossRefGoogle Scholar
  7. 7.
    Shichman, H., and Hodges, D.A., “Modeling and simulation of insulated-gate field-effect transistor switching circuits,” IEEE J. Solid-State Circuits, 1968, SC-3, pp. 285–289.CrossRefGoogle Scholar
  8. 8.
    VanTuyl, R., Liechti, C.A., “Gallium-arsenide digital integrated circuits,” U.S. Air Force Tech. Rep. AFAL-TR-74-40, 1974.Google Scholar
  9. 9.
    Taki, T., “Approximation of junction field-effect transistor characteristics by a hyperbolic function,” IEEE J. Solid-State Circuits, 1978, SC-13, pp. 724–726.CrossRefGoogle Scholar
  10. 10.
    Curtice, W.R., “A MESFET model for use in the design of GaAs integrated circuits,” IEEE Trans. Microwave Theory Tech., 1980, MTT-28, pp. 448–456.CrossRefGoogle Scholar
  11. 11.
    Materka, A, and Kacprzak, T., “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Trans. Microwave Theory Tech., 1985, MTT-33, pp. 129–135.CrossRefGoogle Scholar
  12. 12.
    Curtice, W.R., and Ettenberg, M., “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers,” IEEE Trans. Microwave Theory Tech., 1985, MTT-33, pp. 1383–1394.CrossRefGoogle Scholar
  13. 13.
    Statz, H., Newman, P., Smith, I.W., Pucel, R.A., and Haus, H.A., “GaAs FET device and circuit simulation in SPICE,” IEEE Trans. Electron Dev., 1987, ED-34, pp. 160–169.CrossRefGoogle Scholar
  14. 14.
    Shawki, T., Salmer, G., and El-Sayed, O., “MODFET 2-D hydrodynamic energy modeling: optimization of subquarter-micron-gate structures,” IEEE Trans. Electron Dev., 1990, 37, pp. 21–30.CrossRefGoogle Scholar
  15. 15.
    Snowden, C.M., and Loret, D., “Two-dimensional hot electron models for short gate length GaAs MESFETs,” IEEE Trans. Electron Dev., 1987, ED-34, pp. 212–223.CrossRefGoogle Scholar
  16. 16.
    Awano, Y., Tomizawa, K., and Hashizumi, N., “Performance and principle of operation of GaAs ballistic FET,” IEEEIEDM Tech. Digest, 1983, pp. 617–620.Google Scholar
  17. 17.
    Snowden, CM., Howes, M.J., and Morgam, D.V., “Large-signal modeling of GaAs MESFET operation,” IEEE Trans. Electron Dev., 1983, ED-30, pp. 1817–1824.CrossRefGoogle Scholar
  18. 18.
    Grubin, H.A., Kreskovsky, J.P., and Levy, R., “Modeling of large-signal device/circuit interactions,” Proc. IEEE/Cornell Conf. High Speed Semiconductors, 1989, pp. 33–45.Google Scholar
  19. 19.
    Dacey, G.C., and Ross, I.M., “The field-effect transistor,” Bell Sys. Tech. J., 1955, 34, pp. 1149–1189.Google Scholar
  20. 20.
    Yamaguchi, K, and Kodera, H., “Drain conductance of junction gate FETs in the hot electron range,” IEEE Trans. Electron Dev., 1976, ED-23, pp. 545–553.CrossRefGoogle Scholar
  21. 21.
    Madjar, A., and Rosenbaum, F.J., “A large-signal model for the GaAs MESFET,” IEEE Trans. Microwave Theory Tech., 1981, MTT-29, pp. 781–788.CrossRefGoogle Scholar
  22. 22.
    Kennedy, D.P., and O’Brien, R.R., “Computer aided two dimensional analysis of the junction field-effect transistor”, IBM J. Res. Devel., 1970, pp. 95–116.Google Scholar
  23. 23.
    Khatibzadeh, M.A., and Trew, R.J., “A large-signal, analytic model for the GaAs MESFET,” IEEE Trans. Microwave Theory Tech., 1988, MTT-36, pp. 231–238.CrossRefGoogle Scholar
  24. 24.
    Khatibzadeh, M.A., Large-Signal Modeling of Gallium Arsenide Field-Effect Transistors. Ph.D. Thesis, 1987, North Carolina State University, Raleigh.Google Scholar
  25. 25.
    Trew, R.J., and Mishra, U.K., “Gate breakdown in MESFETs and HEMTs,” IEEE Electron Dev. Lett., 1991, 12, pp. 524–526.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1993

Authors and Affiliations

  • Robert J. Trew
    • 1
  1. 1.North Carolina State UniversityUSA

Personalised recommendations