Skip to main content

Abstract

Metal semiconductor field effect transistors (MESFETs) play a central role in microwave technology over the frequency range 1 to 30GHz. They are incorporated in to monolithic microwave integrated circuits as well as being used as discrete elements. They can be used as small-signal and power amplifiers, oscillators, switches, mixers, attenuators and in digital circuits as the fundamental active device. This wide range of applications leads to the requirement for models capable of accurately representing the operation of MESFETs at DC, and microwave frequencies and in both small- and large-signal operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Mudares, M., (1984) Computer Simulation Studies of Microwave FETs, PhD Thesis, University of Surrey

    Google Scholar 

  • Bauhann, P.E., Haddad, G.I., and Masnari, N.A., (1973) Comparison of the hot electron diffusion rates for GaAs and InP, Electronic Letters, 9, 19, pp. 460–461

    Article  Google Scholar 

  • Barton, T.M., and Ladbrooke, P.H., (1985) Dependence of maximum gate-drain potential in GaAs MESFET’s upon localized surface charge, IEEE Electron Device Letters, Vol. EDL-6, No. 3, pp. 117–119

    Article  Google Scholar 

  • Barton, T.M., and Snowden, CM., (1990) Two-dimensional numerical simulation of trapping phenomena in the substrate of GaAs MESFETs, IEEE Trans. Electron Devices, Vol. ED-37, No. 6, pp. 1409–1415

    Article  Google Scholar 

  • Blight, S.R., Wallis, R.H. and Thomas, H., (1986) Surface influence of the conductance DLTS spectra of GaAs MESFET’s, IEEE Trans. Electron Devices, Vol. ED-33, No. 10, pp. 1447–1453

    Article  Google Scholar 

  • Blotekjaer, K., (1970) Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices, Vol. ED-17, No.l, pp. 38–47

    Article  Google Scholar 

  • Bosch, R., and Thim, H.W., (1974) Computer simulation of transferred electron devices using the displaced Maxwellian approach, IEEE Trans. ED-21, 1, pp. 16–35

    Google Scholar 

  • Carnez, B., Cappy, A., Kaszynski, A., Constant, E., and G. Salmer, (1980) Modeling of submicrometer gate field-effect transistor including the effects of nonstationary electron dynamics, J. Appl. Physics, 51, 1, pp. 784–790

    Article  Google Scholar 

  • Cook, R.K. and Frey, J. (1982) An efficient technique for two-dimensional simulation of velocity overshoot in Si and GaAs devices, COMPEL, 1, 2, pp. 65–87

    Google Scholar 

  • Curtice, W, and Yun, Y-H, (1981) A temperature model for the GaAs MESFET, IEEE Trans. Electron Devices, ED-28, 8, pp. 954–962

    Article  Google Scholar 

  • Drury, R. (1992) (diagram), University of Leeds, Leeds.

    Google Scholar 

  • Feng, Y-K., and Hintz, A., (1988) Simulation of submicrometer GaAs MESFET’s using a full dynamic transport model, IEEE Trans. Electron Devices, ED-35, pp. 1419–1431

    Article  Google Scholar 

  • Ghione, G., Golzio P., and Naldi, C, (1987) Thermal analysis of power GaAs MESFETs, Proc. NASECODE V Conf., Ed. J.J.H. Miller, (Boole Press, Dublin), pp. 195–200

    Google Scholar 

  • Ghione, G., Golzio P., and Naldi, C, (1988) Self-consistent thermal modelling of GaAs MESFETs: a comparative analysis of power device mountings, Alta Frequenza, Vol. LVII, No. 7, pp. 311–319

    Google Scholar 

  • Gresho, P.M. and Lee, R.L., (1981) Don’t suppress the wiggles - they’re telling you something!, Comp. and Fluids, Vol. 9, pp. 223–254

    Article  MathSciNet  Google Scholar 

  • Grubin, H.L., and Kreskovsky, J.P., (1989) Quantum moment balance equations and resonant tunneling substrates, Solid-State Electron., Vol. 32, No. 12, pp. 1071–1075

    Article  Google Scholar 

  • Gummel, H.K., (1964) A self-consistent interactive scheme for one-dimensional steady-state transistor calculations, IEEE Trans. Electron Devices, Vol. ED-11, No. 10, pp. 455–465

    Article  Google Scholar 

  • Horio, K., Yanai, H. and Ikoma, T. (1988) Numerical simulation of GaAs MESFET’s on the semi-insulating substrate compensated by deep traps, IEEE Trans. Electron Devices, ED-35, pp. 1778–1785

    Article  Google Scholar 

  • Huang, M.D.D., (1985) The constant-flow patch test - a unique guideline for the evaluation of discretization schemes for the current continuity equations, IEEE Trans. Electron Devices, ED-32, No. 10, pp. 2139–2164

    Article  Google Scholar 

  • Kennedy, D.P and O’Brien, R.R, (1970) Computer aided two-dimensional analysis of the junction field effect transistor, IBM J. Res. Dev., 14, pp. 95–116

    Article  Google Scholar 

  • Ladbrooke, P.H. and Blight, S.R., (1987) Low-field low frequency dispersion of transconductance in GaAs MESFETs, GEC Journal of Research, Vol 5, No. 4, pp. 217–225

    Google Scholar 

  • Li, Q, and Dutton, R.W. (1991) Numerical small-signal AC modeling of deep-Level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates, IEEE Trans. Electron devices, ED-38, No. 6, pp. 1285–1288

    Article  Google Scholar 

  • Lo, S-H, and Lee, C-P, (1991) Numerical analysis of frequency-dependent output conductance of GaAs MESFETs, IEEE Trans. Electron Devices, Vol. ED-38, No. 8, pp. 1693–1700

    Google Scholar 

  • Look, D.C., Evans, K.R. and Stutz, C.E., (1991) Effects of a buffer layer on free-carrier depletion in n-type GaAs, IEEE Trans. Electron Devices, ED-38, No. 6, pp. 1280–1284

    Article  Google Scholar 

  • McAndrew, C.C., Heasell, E.L., and Singhal, (1987) A comprehensive transport model for semiconductor device simulation, IoP Semicond. Sci. Technol., 2, pp. 643–648

    Article  Google Scholar 

  • Mizuta, H., Yamaguchi, K. and Takahashi, (1987) Surface potential effect on gate-drain avalanche breakdown in GaAs MESFET’s, IEEE Trans. Electron Devices, Vol. ED-34, No. 10, pp. 2027–2033

    Article  Google Scholar 

  • Moglestue, C, (1982) Comp. Meth. App. Mechanics and Eng., 30, pp. 173–208

    Article  MATH  Google Scholar 

  • Pone, J.F., Castagnè, R.C., Courat, J.P. and Arnodo, C, (1982) Two-dimensional particle modeling of submicrometer gate GaAs FET’s near pinch off, IEEE Trans. Electron Devices, ED-29, pp. 1244–1255

    Article  Google Scholar 

  • Reiser, M. (1973) A two-dimensional numerical FET model for DC, AC, and large-signal analysis, IEEE Trans. Electron Devices, ED-20, 1, pp. 35–45

    Article  Google Scholar 

  • Roache, P.J., (1982) Computational Fluid Dynamics, (Albuquerque, NM) Hermosa.

    Google Scholar 

  • Rudan, M. and Odeh, F., (1986) Multi-dimensional discretization scheme for the hydrodynamic model of semiconductor devices, COMPEL, Vol. 5, No. 3, pp. 149–183

    MATH  MathSciNet  Google Scholar 

  • Santos, J.C.A.D., (1991) Modelling of short-gate-length metal semiconductor field-effect transistors for power amplifiers, PhD Thesis, University of Leeds

    Google Scholar 

  • Selberherr, S., (1984) Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Vienna)

    Google Scholar 

  • Shigyo, N., Wada, T. and Yasuda S., (1989) Discretization problem for multidimensional current flow, IEEE Trans. Computer-Aided Design, Vol. CAD-8, No. 10, pp. 1046–1050

    Article  Google Scholar 

  • Snowden, CM. (1982) Microwave FET oscillator development based on large-signal characterisation, PhD Thesis, University of Leeds

    Google Scholar 

  • Snowden, CM., Howes, MJ. and Morgan D.V., (1983) Large signal modeling of GaAs MESFET operation, IEEE Trans. Electron Devices, ED-30, pp. 1817–1824

    Article  Google Scholar 

  • Snowden, CM., (1984) Numerical Simulation of Microwave GaAs MESFETs, Proc. Int. Conf. on Simulation of Semiconductor Devices and Processes, (Pineridge, Swansea, UK) pp. 406–425

    Google Scholar 

  • Snowden, CM., and Loret, D. (1987) Two-dimensional hot electron models for short-gate length GaAs MESFETs, IEEE Trans. Electron Devices, ED-34, pp. 212–223

    Article  Google Scholar 

  • Snowden, CM., (1988) Semiconductor Device Modelling, (Peter Peregrinus, London)

    Google Scholar 

  • Snowden, CM., and Pantoja, R.R., (1992) GaAs MESFET Physical Models for Process-Oriented Design, IEEE Trans. MTT-40

    Google Scholar 

  • Son, I, and Tang, T-W, (1989) Modeling of deep-level trap effects in GaAs MESFET’s, IEEE Trans. Electron Devices, Vol. ED-36, No. 4, pp. 632–640

    Article  Google Scholar 

  • Tang, T.W., (1984) Extension of the Scharfetter-Gummel algorithm to the energy-balance equation, IEEE Trans. Electron Devices, Vol. ED-31, No. 12, pp. 1912–1914

    Article  Google Scholar 

  • Wada, T. and Frey, J. (1979) Physical basis of short channel MESFET operation, IEEE J. Solid-State Circuits, SC-14, 2, pp. 398–412

    Article  Google Scholar 

  • Wada, Y. and Tomizawa, M., (1988) Drain avalanche breakdown in gallium arsenide MESFET’s, IEEE Trans. Electron Devices, Vol. ED-35, No.11, pp. 1765–1770

    Article  Google Scholar 

  • Warriner, R.A., (1977) Computer simulation of gallium arsenide field effect transistor using Monte Carlo methods, Solid State Electron. Dev., 1, pp l05–109

    Google Scholar 

  • Yamaguchi, K., Asai, S. and Kodera, H. (1975) Two-dimensional numerical analysis of stability criteria of GaAs FETs, IEEE Trans. Electron Devices, ED-23, pp. 1283–1290

    Google Scholar 

  • Yoshii, A., Tomizawa, M. and Yokoyama, K., (1983) Accurate modeling for submicrometer-gate Si and GaAs MESFET’s using two-dimensional particle simulation, IEEE Trans. Electron Devices, ED-30, pp. 1376–1379

    Article  Google Scholar 

  • Zhao, J.H.,(1990) Modeling the effects of surface states on DLTS spectra of GaAs MESFETs, IEEE Trans. Electron Devices, Vol.37, No. 5, pp. 1235–1244

    Article  Google Scholar 

  • Zhou J-R, and Ferry, D.K., (1992) Simulation of ultra-small GaAs MESFET using quantum moment methods, IEEE Trans. Electron Devices, ED-39, pp. 473–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Snowden, C.M. (1993). MESFET Modelling. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics