Skip to main content

Quasi-Two-Dimensional Models for MESFETs and HEMTs

  • Chapter

Abstract

For the physical modelling of MESFETs and HEMTs, the choice of a modelling technique is strongly guided by the aimed objectives. Roughly speaking, two dimensional (2D) models are mainly devoted to physical analysis while more simple models (analytical or one-dimensional for instance) are rather devoted to electrical engineering, CAD, IC design... The aim of the quasi two dimensional approach (Q2D) is to be a modelling taking into consideration the most important phenomena occuring in the device while staying simple and fast enough to be used in CAD. In addition one objective of Q2D approach is to provide not only the I–V characteristics but also the AC and noise performance as well as the non linear behavior of the device. The main particularities of the Q2D approach can be summerized as follows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi S. (1982), Material parameters of In1-xGaxAsyP1-y and related binaries J. Appl. Phys. 53(12):8775–8792.

    Article  Google Scholar 

  • Alamkan J. et al (1990) Modelling of Pseudomorphic AlGaAs/InGaAs/GaAs layers using self consistent approach. European Transactions on telecommunications and Related Technologies, Vol. 1(4):59–62.

    Article  Google Scholar 

  • Cappy A. et al (1985) Noise modeling in Submicrometer-gate two Dimensional Electron gas Field Effect Transistors. IEEE Trans. Elec. Dev. Vol. ED-32 (12):2787–2796.

    Article  Google Scholar 

  • Cappy A., Heinrich W. (1989) High freuqency FET noise performance: A new approach IEEE Trans. Elec. Dev. Vol. 36(2):403–408.

    Article  Google Scholar 

  • Carnez B. et al (1980) “Modeling of a submicrometer gate field effect transistor including effects of non stationary electron dynamics”. J. Appl. Phys. vol. 51(1):784–790.

    Article  Google Scholar 

  • Delagebeaudeuf D., Linh N.T. (1982) “Metal (n) AlGaAs/GaAs two dimensional electron gas FET” IEEE Trans. Elec. Dev. vol. ED 29(6):955–960.

    Article  Google Scholar 

  • Drummond et al (1983) “Bias dependence and light sensitivity of AlGaAs/GaAs MODFET at 77° K” IEEE Trans. Elec. Dev. Vol. ED-30:1806–1811.

    Article  Google Scholar 

  • Frensley W.R. (1981) “Power-limiting breakdown effects in GaAs MESFET’s” IEEE Trans. Elec. Dev. Vol. ED-28:962–970.

    Article  Google Scholar 

  • Happy H. et al (1993) “HELENA, a friendly software for calculating the DC AC and noise performance of HEMTs” to be published in Int. J. of Microwave and millimeter wave CAE.

    Google Scholar 

  • Morgan T.N. (1986) “Theory of the DX centers in AlGaAs and GaAs crystals” Phys. Rev. B, Vol. 34:2664–2669.

    Article  Google Scholar 

  • Rothe H. and Dahlke W. (1956) “Theory of noisy fourpoles” Proc. IRE, Vol. 44:811–817.

    Article  Google Scholar 

  • Schawki T. et al (1988) “2D simulation of degenerate hot electron transport in MODFET including DX-center trapping” Proc. 3rd Int. Conf. Simulation Semiconductor Devices Processes (SISDEP 88).

    Google Scholar 

  • Shawki et al (1990) “MODFET 2-D Hydrodynamic Energy Modeling Optimization of subquarter-Micron-Gate structure” IEEE Trans. Elec. Dev. Vol. 37(1):21–30.

    Article  Google Scholar 

  • Shockey W. (1952) “A Unipolar Field Effect Transistor” Proc. IRE, 40:1365.

    Article  Google Scholar 

  • Shur M. Eastman L. (1980) “I–V characteristics of GaAs MESFET with non uniform doping profile” IEEE Trans. Elec. Dev. Vol. ED-27:455–461.

    Article  Google Scholar 

  • Shur M. (1976) “Influence of non uniform field distribution on frequency limit of GaAs field effect transistors” Elect. Lett. Vol. 12, n°23:615.

    Article  Google Scholar 

  • Snowden CM. and Pantoja R.R. (1989) “Quasi-two-Dimensional MESFET simulations for CAD” IEEE Trans. Elect. Devices, Vol. 36(9):1564–1574.

    Article  Google Scholar 

  • Thobel J.L. et al (1990) “the electron transport properties of strained InxGai_xAs”. Appl. Phys. Lett. Vol. 56(4):346–348.

    Article  Google Scholar 

  • Vinter B. (1984) “Subbands and charge control in a two-dimensional electron gas field-effect transistor”. Appl. Phys. Lett. 44(3):307–309.

    Article  Google Scholar 

  • Wroblewski R. et al (1983): “Theoretical analysis of the DC avalanche breakdown in GaAs MESFET” IEEE Trans. Elect. Devices Vol. ED-30 (2):154–159.

    Article  Google Scholar 

  • Yoshida J. (1986) “Classical versus mechanical calculation of the electron Distribution at the n-AlGaAs/GaAs heterointerface” IEEE Trans. Elec. Devices Vol. 33(1):154–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cappy, A. (1993). Quasi-Two-Dimensional Models for MESFETs and HEMTs. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics