Skip to main content

Numerical Methods and their Application to Device Modelling

  • Chapter
Compound Semiconductor Device Modelling

Abstract

The numerical modelling of devices involves the solution of sets of coupled partial differential equations, which in turn involve the solution of simultaneous nonlinear equations after discretisation has taken place. It is not possible in a single paper to fully describe all the numerical techniques involved in this process, and in this paper we will concentrate on the finite difference approach. Descriptions of the Finite Element method (Selberherr 1984, Mobbs 1989), the Boundary Element method and the Multigrid method (Ingham 1989) can be found elsewhere. Motivation for considering certain techniques will be given by examining the equations involved in the modelling of a two-dimensional MESFET. Finite differences are introduced in section 2, the solution of simultaneous equations discussed in section 3, and the discretisation of the current continuity equations and energy equation discussed in section 4. In section 5 we give details of the implementation for the case of the MESFET , and for a one-dimensional p-n junction. Finally in section 6 we discuss parameter determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton T (1989) Computer simulations. Semiconductor device modelling (Snowden CM ed, Springer-Verlag, London, Berlin): 227–247

    Chapter  Google Scholar 

  • Broyden CG (1972) in Numerical methods for unconstrained optimisation (Murray W ed., Academic Press, New York )

    Google Scholar 

  • Clarke ME (1989) Equivalent circuit models for silicon devices. Semiconductor device modelling (Snowden CM ed.,Springer-Verlag, London, Berlin ):128–142

    Chapter  Google Scholar 

  • Curtis A and Reid JK (1974) The choice of step-length when using differences to approximate Jacobian matrices. J Inst Math Appl 13:121–126

    MATH  Google Scholar 

  • de Graaff HC and Klaassen FM (1990) Compact transistor modelling for circuit design. Springer-Verlag, Wien, New York

    MATH  Google Scholar 

  • De Mari A (1968) An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid State Electronics 11:33–58

    Article  Google Scholar 

  • Doganis K and Scharfetter DL (1983) General optimisation and extraction of IC device model parameters. IEEE Trans ED-30: 1219–1228

    Google Scholar 

  • Feng YK and Hintz A (1988) Simulation of submicrometer GaAs MESFETs using a full dynamic transport model. IEEE Trans ED-35: 1419–1431

    Google Scholar 

  • Hildebrand FB (1956) Introduction to numerical analysis. McGraw-Hill, New York, Toronto, London

    MATH  Google Scholar 

  • Ingham DB (1989) Numerical techniques - finite difference and boundary element method. Semiconductor device modelling (Snowden CM ed., Springer-Verlag, London, Berlin):34–48

    Chapter  Google Scholar 

  • Jesshope CR (1979) Comp Phys Comm 17:383–391

    Article  Google Scholar 

  • Kurata M (1982) Numerical analysis for semiconductor devices. Lexington Books, Lexington, Toronto

    Google Scholar 

  • McAndrew CC, Singhal K and Heasell EL (1985) A consistent nonisothermal extension of the Scharfetter-Gummel stable difference approximation. IEEE ED Lett EDL6:446–447

    Article  Google Scholar 

  • Mobbs SD (1989) Numerical techniques - the finite element method. Semiconductor device modelling (Snowden CM ed., Springer-Verlag, London, Berlin):49–59

    Chapter  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA and Vetterling WT (1986) Numerical Recipes. Cambridge University Press, Cambridge, London, New York

    Google Scholar 

  • Reiser M (1972a) Large-scale numerical simulation in semiconductor device modelling. Computer Methods in App Mech and Eng 1:17–38

    Article  Google Scholar 

  • Reiser M (1972b) A two-dimensional numerical FET model for dc- ac- and large signal analysis. IBM Research J, April, RZ499

    Google Scholar 

  • Scharfetter DL and Gummel HK (1969) Large signal analysis of a silicon Read diode oscillator. IEEE Trans ED-16: 64–77

    Google Scholar 

  • Scraton RE (1987) Further numerical methods. Edward Arnold, London, Baltimore

    MATH  Google Scholar 

  • Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer-Verlag, Vienna, New York

    Google Scholar 

  • Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Snowden CM(ed) (1988) Semiconductor device modelling. Peter Peregrinus,London

    Google Scholar 

  • Snowden CM and Loret D (1987) Two-dimensional hot electron models for short-gate-length GaAs MESFETs. IEEE Trans ED-34: 212–223

    Google Scholar 

  • Stern F (1970) Iteration methods for calculating self-consistent fields in semiconductor inversion layers. J Comp Phys 6:56–67

    Article  MATH  Google Scholar 

  • Stern F and Das Sarma S (1984) Electron energy levels in GaAs-Ga1−x AlxAs heterojunctions. Phys Rev B30:840–848

    Google Scholar 

  • Stoer J and Bulirsch R (1980) Introduction to numerical analysis. Springer-Verlag, New York

    Google Scholar 

  • Stone HL (1968) Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Num Anal 5:530–558

    Article  MATH  Google Scholar 

  • Tang T-W (1984) Extension of the Scharfetter-Gummel algorithm to the energy balance equation. IEEE Trans ED-31:1912–1914

    Google Scholar 

  • Varga RS (1962) Matrix iterative algebra. Prentice Hall Inc, New Jersey

    Google Scholar 

  • Wang S-J, Lee J-Y and Chang C-Y (1986) An efficient and reliable approach for semiconductor device parameter extraction. IEEE Trans CAD-5:170–179

    Google Scholar 

  • Ward DE and Doganis K (1982) Optimised extraction of MOS model parameters. IEEE Trans CAD-1:163–168

    Google Scholar 

  • Wilkinson JH and Reinsch C (1971) Handbook for automatic computation, vol 2. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Xue H, Howes MJ and Snowden CM (1991) The modified semiconductor equations and associated algorithms for physical simulation. Int J Num Modelling: Electronic Networks, Devices and Fields 4:107–122

    Article  Google Scholar 

  • Young DM (1971) Iterative solution of large linear systems. Academic Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cole, E.A.B. (1993). Numerical Methods and their Application to Device Modelling. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics