Skip to main content

On the Determination of the Size of Microbial Cells Using Flow Cytometry

  • Chapter
Flow Cytometry in Microbiology

Abstract

In most flow cytometers the determination of cell size is based on the measurement of light scattered by cells as they pass through an illumination zone. In conventional instruments the source of this illumination is a laser (Shapiro 1988). Given that both the cell volume and the DNA content of bacteria is some 1000-fold less than that of higher eukaryotic cells, however, laser-based flow cytometers have generally proved unsuitable for the study of microorganisms (Steen et al. 1990). In the Skatron Argus 100 flow cytometer, a high-pressure mercury arc lamp is used as the excitation source, and the machine makes use of an open flow chamber in which a jet impinges at an angle onto the surface of a microscope cover slip (Fig. 4.1). The result is a flat, laminar flow of water across the glas & surface. This flow has only two interfaces — the glass/water interface and the water/air interface — and of these only the former can collect particles that may cause background scattering of light (Steen et al. 1989). Furthermore the orientation of these surfaces perpendicular to the optical axis means that the surfaces themselves scatter only the minimum of light. Thus the system has a high signal-to-noise ratio and is therefore ideal for detecting light scattered by microorganisms (Boye et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alanen KA, Klemi PJ, Joensuu H, Kujari H, Pekkala E (1989) Comparison of fresh, ethanolpreserved, and paraffin-embedded samples in DNA flow cytometry. Cytometry 10:81–85

    Article  PubMed  CAS  Google Scholar 

  • Boye E, Løbner-Olesen A (1990) Flow cytometry: illuminating microbiology. New Bioi 2: 119–125

    CAS  Google Scholar 

  • Boye E, Løbner-Olesen A (1991) Bacterial growth control studied by flow cytometry. Res Microbiol 142:131–135

    Article  PubMed  CAS  Google Scholar 

  • Boye E, Steen HB, Skarstad K (1983) Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol 129:973–980

    PubMed  CAS  Google Scholar 

  • Davey CL, Kell DB, Dixon NM (1990a) SKATFIT: A program for determining the mode of growth of individual microbial cells from flow cytometric data. Binary 2:127–132

    Google Scholar 

  • Davey CL, Dixon NM, Kell DB (1990b) FLOWTOVP: A spreadsheet method for linearising flow cytometric light-scattering data used in cell sizing. Binary 2:119–125

    Google Scholar 

  • Dean PN (1990) Data processing. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley-Liss, New York, pp 415–444

    Google Scholar 

  • Frelat G, Laplace-Builhe C, Grunwald D (1989) Microbial analysis by flow cytometry: present and future, In: Yen A (ed) Flow cytometry: advanced research and clinical applications, vol II, CRC Press, Boca Raton, FL, pp 255–279

    Google Scholar 

  • Grant EH, Sheppard RJ, South GP (1978) Dielectric behaviour of biological molecules in solution. Clarendon Press, Oxford

    Google Scholar 

  • Horan PK, Muirhead KA, Slezak SE (1990) Standards and controls in flow cytometry. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley-Liss, New York, pp 397–414

    Google Scholar 

  • Kachel V, Fellner-Feldegg H, Menke E (1990) Hydrodynamic properties of flow cytometry instruments. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley-Liss, New York, pp 27–44

    Google Scholar 

  • Kell DB, Davey HM, Kaprelyants AS, Westerhoff HV (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Ant van Leeuwenhoek 60:145–158

    Article  CAS  Google Scholar 

  • Kogoma T, Skarstad K, Boye E, von Meyenburg K, Steen HB (1985) RecA protein acts at the initiation of stable DNA replication in rnh mutants of Escherichia coli K-12. J Bacteriol 163:439–444

    PubMed  CAS  Google Scholar 

  • McCoy JP, Lovett EJ (1989) Basic principles in clinical flow cytometry. In: Keren DF (ed) Flow cytometry in clinical diagnosis, ASCP Press, Chicago, pp 12–40

    Google Scholar 

  • Muirhead KA, Horan PK, Poste G (1985) Flow cytometry: present and future. Biotechnology 3:337–356

    Article  CAS  Google Scholar 

  • Mullaney PF, Dean PN (1970) The small angle light scattering of biological cells. Biophys J 10:764–772

    Article  PubMed  CAS  Google Scholar 

  • Murphy RF, Chused TM (1984) A proposal for a flow cytometric data file standard. Cytometry 5:553–555

    Article  PubMed  CAS  Google Scholar 

  • Paau AS, Cowles JR, Oro J (1977) Flow-microfluorometric analysis of Escherichia coli, Rhizobium meliloti and Rhizobium japonicum at different stages in the growth cycle. Can J Microbiol 23:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Salzman GC, Singham SB, Johnston RG, Borhen CF (1990) Light scattering and cytometry. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow.cytometry and sorting. Wiley-Liss, New York, pp 81–107

    Google Scholar 

  • Scheper Th, Hoffmann H, Schugerl K (1987) Flow cytometric studies during culture of Saccharomyces cerevisiae. Enzyme Microb Technol 9:399–405

    Article  CAS  Google Scholar 

  • Shapiro HM (1983) Multistation multiparameter flow cytometry: A critical Review and rationale. Cytometry 3:227–243

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM (1988) Practical flow cytometry. Alan R Liss, New York

    Google Scholar 

  • Shapiro HM (1990) Flow cytometry in laboratory microbiology: New directions. ASM News 56:584–588

    Google Scholar 

  • Skarstad K, Steen HB, Boye E (1985) Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J Bacteriol 163:661–668

    PubMed  CAS  Google Scholar 

  • Skarstad K, Boye E, Steen HB (1986) Timing of chromosome replication in individual Escherichia coli cells. EMBO J 5:1711–1717

    PubMed  CAS  Google Scholar 

  • Steen HB (1990) Flow cytometric studies of microorganisms. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting. Wiley-Liss, New York, pp 605–622

    Google Scholar 

  • Steen HB, Lindmo T (1985) Differential of light scattering in an arc-lamp-based cpiillumination flow cytometer. Cytometry 6:281–285

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Lindmo T, Stokke T (1989) Differential light-scattering detection in an arc lampbased flow cytometer. In: Yen A (ed) Flow cytometry: advanced research and clinical applications, vol I. CRC Press, Boca Raton, FL, pp 63–80

    Google Scholar 

  • Steen HB, Skarstad K, Boye E (1990) DNA measurements of bacteria. In: Darzynkiewicz Z, Crissman HA (eds) Flow cytometry, Academic Press, London, pp 519–526

    Chapter  Google Scholar 

  • Wittrup KD, Mann MB, Fenton DM, Tsai LB, Bailey JE (1988) Single-cell light scatter as a probe of refractile body formation in recombinant Escherichia coli. Biotechnology 6:423–426

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Davey, H.M., Davey, C.L., Kell, D.B. (1993). On the Determination of the Size of Microbial Cells Using Flow Cytometry. In: Lloyd, D. (eds) Flow Cytometry in Microbiology. Springer, London. https://doi.org/10.1007/978-1-4471-2017-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2017-9_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2019-3

  • Online ISBN: 978-1-4471-2017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics