Skip to main content

Nuclear Phenomenology with Neural Nets

  • Conference paper
Neural Network Dynamics

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

We propose a new method of phenomenological analysis of physical systems based on adaptive neural networks. When trained with the backpropagation algorithm, multilayered networks are capable of learning the associations between dependent and independent variables implicit in large data sets and may show reliable predictive power when tested on examples absent from the training set. The approach is illustrated through applications to several problems relating to the stability of atomic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning internal representations by error propagation. In: Rumelhart, D. E., McClelland, J. L., et al. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1. MIT Press, Cambridge, MA, 1986

    Google Scholar 

  2. Müller, B., and Reinhardt, J. Neural Networks — an Introduction. Springer, Heidelberg, 1990

    MATH  Google Scholar 

  3. Hertz, J., Krogh, A., and Palmer, R. G. Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, California, 1991

    Google Scholar 

  4. Clark, J. W. Neural network modelling. Physics in Medicine and Biology 1991; in press

    Google Scholar 

  5. Sejnowski, T. J., and Rosenberg, C. R. Parallel networks that learn to pronounce English text Complex Systems 1987; 1: 145–168

    MATH  Google Scholar 

  6. Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Lautrup, B., Noskov, L., Olsen, O. H., and Petersen, S. B. Protein secondary structure and homology by neural networks: the α-helices of rhodopsin FEBS Letters 1988; B241: 223–228

    Article  Google Scholar 

  7. Bohr, H., Bohr, J., Brunak, S., Cotterill, R. M. J., Fredholm, H., Lautrup, B., and Petersen, S. B. A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks FEBS Letters 1990; 261: 43–46

    Article  Google Scholar 

  8. Bohr, H., elsewhere in this volume.

    Google Scholar 

  9. Meyer, B., Hansen, T., Nute, D., Albersheim, P., Darville, A., York, W., and Sellers, J. Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks Science 1991; 251: 542–544.

    Article  Google Scholar 

  10. Odenwahn, S. C., Stockwell, E. B., Pennington, R. L., Humphreys, R. M., and Zumach, W. A. Automated star/galaxy discrimination with neural networks. Ap. J. (submitted).

    Google Scholar 

  11. Angel, J. R. P., Wizinowich, P., Lloyd-Hart, M., and Sandler, D. Adaptive optics for array telescopes using neural network techniques. Nature 1990; 348: 221–224

    Article  Google Scholar 

  12. Sandler, D., Barrett, T. K., Palmer, D. A., Fugate, R. Q., and Wild, W. J. Use of a neural network to control an adaptive optics system for an astronomical telescope Nature 1991; 351: 300–302

    Article  Google Scholar 

  13. Denby, B. Neural networks and cellular automata in experimental high energy physics. Comput. Phys. Commun. 1988; 49: 429–448

    Article  Google Scholar 

  14. Peterson, C. Track finding with neural networks. Nucl. Instr. Methods 1989; A279: 537–545

    Google Scholar 

  15. Denby, B., and Linn, S. L. Spatial pattern recognition in a high energy particle detector using a neural network algorithm. Comput. Phys. Commun. 1990; 56: 293–297

    Article  Google Scholar 

  16. Humpert, B. On the use of neural networks in high-energy physics experiments. Comput. Phys. Commun. 1990; 56; 299–311

    Article  MathSciNet  Google Scholar 

  17. Walker, F. W., Miller, D. G., and Feiner, F. Chart of the Nuclides, Thirteenth Edition, General Electric, San Jose, CA, 1984

    Google Scholar 

  18. Clark, J. W., and Gazula, S.: Artificial neural networks that learn many-body physics. In: Fantoni, S., and Rosati, S. (eds.) Condensed Matter Theories, Vol. 6. Plenum, New York, 1991

    Google Scholar 

  19. Clark, J. W., Gazula, S., and Bohr, H.: Teaching nuclear systematics to neural networks. In: Benhar, O., Bosio, C., Del Giudice, P., and Tabet, E. (eds.) Neural Networks: From Biology to High-Energy Physics, in press

    Google Scholar 

  20. Luenberger, D. G. Linear and Nonlinear Programming, 2nd ed. Addison-Wesley, Reading MA, 1984

    MATH  Google Scholar 

  21. Prater, J. S., private communication

    Google Scholar 

  22. Bohr, A., and Mottelson, B. R. Nuclear Structure, Vol. I. W. A. Benjamin, New York, 1969

    Google Scholar 

  23. Myers, W. D., and Swiatecki, W. J. Nuclear masses and deformations. Nucl. Phys. 1966; 81: 160

    Google Scholar 

  24. Möller, P., and Nix, J. R. Nuclear masses from a unified macroscopic-microscopic model. Atomic Data and Nuclear Data Tables 1988; 39: 213–223

    Article  Google Scholar 

  25. Haustein, P. E. An overview of the 1986–1987 atomic mass predictions. Atomic Data and Nuclear Data Tables 1988; 39: 185–200

    Article  Google Scholar 

  26. Masson, P. J., and Jänecke, J. Masses from an inhomogeneous partial difference equation with higher-order isospin contributions. Atomic Data and Nuclear Data Tables 1988; 39: 273–280

    Article  Google Scholar 

  27. Liisbjerg, C., private communication

    Google Scholar 

  28. Fahlman, S. E., and Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D. (ed.) Neural Information Processing Systems, Vol. 2. Morgan Kaufmann, Denver, 1990

    Google Scholar 

  29. Mozer, M. C., and Smolensky, P.: Skeletonization: a technique for trimming the fat from a network via relevance assessment. In: Touretzky, D. (ed.) Neural Information Processing Systems, Vol. 1. Morgan Kaufmann, Denver, 1989

    Google Scholar 

  30. Le Cun, Y., Denker, J. S., and Solla, S. A.: Optimal brain damage. In: Touretzky, D. (ed.) Neural Information Processing Systems, Vol. 2. Morgan Kaufmann, Denver, 1990

    Google Scholar 

  31. Prater, J. S., private communication

    Google Scholar 

  32. Thompson, S. G. and Tsang, C. F. Superheavy elements. Science 1972; 178: 1047–1055

    Article  Google Scholar 

  33. Nix, J. R. Calculation of fission barriers for heavy and superheavy nuclei. Ann. Rev. Nucl. Part. Sci. 1972; 22: 65–120

    Article  Google Scholar 

  34. Sestito, S., and Dillon, T. The use of sub-symbolic methods for the automation of knowledge acquisition for expert systems. Avignon’91, Expert Systems and their Applications, Avignon, France, June 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this paper

Cite this paper

Clark, J.W., Gazula, S., Bohr, H. (1992). Nuclear Phenomenology with Neural Nets. In: Taylor, J.G., Caianiello, E.R., Cotterill, R.M.J., Clark, J.W. (eds) Neural Network Dynamics. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2001-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2001-8_21

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19771-3

  • Online ISBN: 978-1-4471-2001-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics