Skip to main content

Temporal Processing in Brain Activity

  • Conference paper
Neural Network Dynamics

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 105 Accesses

Abstract

A framework is presented in terms of which models of temporal sequence storage, attention, consciousness and self-consciousness are given. The framework incorporates various features of neurons — stochasticity, short, and long-term temporal processes — together with simple forms of net architecture.

The sequence storage uses topographic or coupled feedback networks and local learning rules, and leads to context sensitivity. The attention and consciousness modelling is at systems level, and uses various known cortical and sub-cortical structures involved in the subject as well as new results from magnetoencephalography. The models are related to a relational automata approach to consciousness and to plant modelling in control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I J Hirsch and C Scherrick, J. Exp. Psychol. 26, 423 (1961)

    Article  Google Scholar 

  2. E Poppel and N Legothetis, “Neuronal Oscillations in the Human Brain”, Naturwiss, 73, 267–8, 1986.

    Article  Google Scholar 

  3. M Scheidt, I Eibl-Eibesfeldt and E Poppel, “Segmentation of Human Short-Term Behaviour”, Naturwiss 74, 289–290, 1987

    Article  Google Scholar 

  4. M I Posner and S E Petersen, “The Attention System of the Human Brain,” Ann.Rev Neurosci 13, 25–42, 1990.

    Article  Google Scholar 

  5. J G Taylor, The Promise of Neural Networks. Springer-Verlag, 1992

    Google Scholar 

  6. R Llinas, “The intrinsic electrophysiological properties of mammalian neurons”, Science 242, 1654–1664, 1988.

    Article  Google Scholar 

  7. V Crunelli and N Leresche, “A role for GABAB receptors in excitation and inhibition of thalamocortical cells”, Trends in Neurosciences 14, 16–21, 1991.

    Article  Google Scholar 

  8. R M Rose and J Hindmarsh, “A model of thalamic neuron”, Proc.R.Soc.Lond. B225. 161–193, 1985.

    Article  Google Scholar 

  9. M Baudry and J Davis (eds), Long-Term Potentiation. Bradford Book, MIT Press, Cam. Mass, 1991.

    Google Scholar 

  10. P C Bressloff and J G Taylor, “Temporal Sequence Storage Capacity of Time-Summating Neural Networks,” J.Phys.A.(in press), 1992.

    Google Scholar 

  11. T G Clarkson, Y Guan, D Gorse and J G Taylor, “Generalisation by pRAMs in the presence of training noise”, KCL preprint 1992.

    Google Scholar 

  12. C Gray and W Singer, IBRO. Abstr. Neurosci. lett.suppl. 22, 1301, 1987.

    Google Scholar 

  13. R Eckhorn, R Bauer, W Jordan, M Brosch, W Kruse, M Munk and H J Reitbock, “Coherent Oscillations: A Mechanism of Feature linking in the Visual Cortex?”, Biol.Cyb. 60, 121–130, 1988.

    Article  Google Scholar 

  14. J I Nelson, P A Salin, M.H-J Munk, M Arzi and J Bullier, “Spatial and temporal coherence in cortico-cortical connections”, Visual Neuroscience (in press) (1992).

    Google Scholar 

  15. R R Llinas, A A Grace and Y Yarom “In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10 to 50 Hz frequency range,” Proc. Natl. Acad. Sci USA 88, 897–901, 1991.

    Article  Google Scholar 

  16. R Llinas and Y Yarom, “Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation in and in vitro study”, J Physiol. 376, 163–182, 1986.

    Google Scholar 

  17. CLT Mannion and J G Taylor, “Information Processing by Oscillating Neurons”, in Coupled Oscillating Neurons. J Taylor and C L Mannion (eds), Springer-Verlag (in press);

    Google Scholar 

  18. J G Taylor, “Neural Networks: From Spin Glasses to Consciousness”, in Proc 2nd Wigner Symposium, Goslar, World Sci.Publ, 1992.

    Google Scholar 

  19. C Koch, T Poggio and V Torre, “Nonlinear Interactions in a dendritic tree: localisation, timing and role in information processing”, Proc.Nathl.Acad.Sci.USA 80, 2799–2802, 1983.

    Article  Google Scholar 

  20. M Reiss and J G Taylor, “Storing Temporal Sequences”, Neural Networks 4 773 – 788, 1991;

    Article  Google Scholar 

  21. M Reiss and J G Taylor, “On Temporal Sequence Storage,” pp129–133, Proc 2nd IEE Int Conf. Art. Neural Networks, Bournemouth, IEE Conf.Publ.No 349, 1991.

    Google Scholar 

  22. J H R Maunsell and W T Newsome “Visual Processing in monkey extrastrate cortex”, Ann. Rev Neurosa 10, 363–401, 1987.

    Article  Google Scholar 

  23. S zeke and S Shipp, “The Functional logic of cortical connections”, Nature 335, 311–317, 1988.

    Article  Google Scholar 

  24. S M Sherman and C Koch, “The control of retinoginiculate transmission in the mammalian lateral geniculate nucleus.” Exp. Brain Res 63, 1–20, 1986.

    Article  Google Scholar 

  25. R Llinas and U Ribary “Rostocaudal Scan in Human Brain: A Global Characteristic of the 40 Hz Response During Sensory Input” in Induced Rythms in the Brain. E Basar and T Bullock eds, Birkhauser (in press) 1992.

    Google Scholar 

  26. N Ribary, A A Ioannides, K D Singh, R Hasson, RPR Bolton, F Lado, A Mogilner and R Llinas “Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans”, Proc.Natl. Acad. Sci (in press), 1991.

    Google Scholar 

  27. A Grimwald (private communication).

    Google Scholar 

  28. H Liljenstrom, “Modelling the dynamics of olfactory cortex using simplified network units and realistic architectures,” Int.J. Neurosci (in press), 1991

    Google Scholar 

  29. J G Taylor “Neural Network Capacity for Temporal Sequence Storage”, Int J Neural Systems 2, 47–54, 1991.

    Google Scholar 

  30. P C Bressloff and J G Taylor, “On the Capacity and Generalisation Ability of More Realistic Neurons” pp II-157-II-161 in Proc.Int.Joint.Conf Art.Neural Nets, Seattle, 1992.

    Google Scholar 

  31. S-I Amari and N Murata, “Statistical Theory of learning Curves under Entropie loss Criterion”, Fac of Engineer, Univ of Tokyo preprint METR 91–12, Nov 1991.

    Google Scholar 

  32. J G Taylor, “Spontaneous behaviour in neural networks”, J.Thor.Biol. 36, 513–528, 1972.

    Article  Google Scholar 

  33. D Gorse and J G Taylor, “On the identity and properties of noisy neural and probabilistic RAM net”, Phys.letts. A131. 326–332, 1988;

    Article  MathSciNet  Google Scholar 

  34. D Gorse and J G Taylor, “An analysis of noisy RAM and neural nets”, Physica D34, 90–114, 1989.

    MathSciNet  Google Scholar 

  35. C A Mead and M A Mahowald, “A silicon model of early visual processing”, Neural Networks 1, 91–97, 1988.

    Article  Google Scholar 

  36. J G Taylor “A Silicon Model of Vertebrate Retinal Processing”, Neural Networks 3, 171–178, 1990.

    Article  Google Scholar 

  37. D Gorse and J G Taylor, “A General model of stochastic neural processing”, Biol.Cyb. 63, 299–306, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  38. D Gorse and J G Taylor, “A continuous Input RAM-Based Stochastic Neural Model”, Neural Networks 4, 193–202, 1991.

    Article  Google Scholar 

  39. T G Clarkson, D Gorse and J G Taylor, “Biologically Plausible learning in hardware Realisable Nets”, pp 195–199 in Artificial Neural Networks, ed T Kohonen et al, Elsevier 1991.

    Google Scholar 

  40. J G Taylor “Dynamical Systems and Artificial Neural Networks” pp31–76 in Theory and Applications of Neural Networks. J G Taylor and C L T Mannion (eds) Springer-Verlag (1991).

    Google Scholar 

  41. J G Taylor “Living Neural Nets”, pp31–52 in New Developments in Neural Computing. J G Taylor and CL T Mannion (eds), Adam Hilger (1989).

    Google Scholar 

  42. A Waibel, “Modular Construction of Time-Delay Neural Networks for Speech Recognition”, Neural Comp 1, 39–46, 1989.

    Article  Google Scholar 

  43. A C Coolen and C C Gielen, “Delays in Neural Networks”, Europhys.lett. 7, 281–285, 1988.

    Article  Google Scholar 

  44. B A Pearlmutter, “Learning State Space Trajectories in Recurrent Neural Networks”, pp II-365-II372 in Proc.Int.Joint Conf.Neural Networks, IEE TAB Neural Networks Committee, 1989.

    Google Scholar 

  45. J Jack, D Noble and Tsien, Electric Current Flow in Excitable Cells. Clarendon Press Oxford, 1975.

    Google Scholar 

  46. D Gorse and J G Taylor, work in progress.

    Google Scholar 

  47. T Kohonen, “Self-Organisation and Associative Memory”, Springer-Verlag, 1984.

    Google Scholar 

  48. G J Chappell and J G Taylor, “Temporal Topographic Maps”, KCL preprint, 1991.

    Google Scholar 

  49. G W Humphreys and V Bruce, Chap 5., Visual Cognition. Lawrence Erlbaum Assoc, 1989.

    MATH  Google Scholar 

  50. F H Crick, “Function of the thalamic reticular complex: The searchlight hypothesis”, Proc.Natl.Acad.Sci, USA, 81, 4586–4590, 1984.

    Article  Google Scholar 

  51. F H Crick and C Koch, “Towards a Neurobiological Theory of Consciousness,” Seminars in the Neurosciences, (in press).

    Google Scholar 

  52. C von der Malsburg and W Schneider, “A neural cocktail-party processor,” Biol.Cyb. 54, 29, 1986.

    Article  Google Scholar 

  53. M Abeles, Local Cortical Circuits. Springer-Verlag, 1982.

    Book  Google Scholar 

  54. C L T Mannion and J G Taylor, “Coupled Excitable Cells”, pp285–305 in Theory and Applications of Neural Networks, ed J G Taylor and C L T Mannion, Springer-Verlag, 1991.

    Google Scholar 

  55. A R Engel, P König, A K Kreiter and W Singer, “Interhemispheric Synchronisation of Oscillatory Neuronal Responses in Cat Visual Cortex”, Science 252, 1177–1179, 1991.

    Article  Google Scholar 

  56. R Galambos, S Makeig and P J Talmachoff, “A 40 Hz auditory potential recorded from the human scalp”, Proc.Nath.Acad Sci USA, 78, 2643–2647, 1981.

    Article  Google Scholar 

  57. M E Scheibel and A E Scheibel, “Specialised Organisational Patterns within the Nucleus Reticularis Thalami of the Cat”, Exp.Neurol.34, 316–322, 1972.

    Article  Google Scholar 

  58. J G Taylor, in preparation

    Google Scholar 

  59. A M Graybiel and D M Berson, “Families of related cortical areas in the extrastriate visual system: summary of an hypothesis”, in C N Woolsey (ed.) Multiple Cortical Sensory Areas. The Humana Press, NJ, 1982.

    Google Scholar 

  60. M Steriade, L Domich, G Oakson and M Deschenes, “The Deafferented Reticular Thalamic Nucleus Generates Spindle Rythmicity”, J.Neurophysiol. 57, 260–273, 1987.

    Google Scholar 

  61. A R Luria The Working brain. trans.B.Haigh, Basic Books, New York, 1973.

    Google Scholar 

  62. H L Teuber, “The frontal lobes and their function”, Int.J.Neurol 5, 282–300, 1966.

    Google Scholar 

  63. M A Goodale and A D Milner, Trends in Neurosci 15, 20 (1992).

    Article  Google Scholar 

  64. D P Munoz, D Pelisson and D Guitton, “Movement of Neural Activity on the Superior Colliculus Motor Driving Gaze Shifts”, Science 251, 1358–1360, 1991.

    Article  Google Scholar 

  65. R Anderson, Ann.Rev.Neurosci, 12, 377–403 (1989).

    Article  Google Scholar 

  66. B C Motter and V B Mountcastle, “The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys”, J.Neurosci. 1,3–26, 1981.

    Google Scholar 

  67. V B Mountcastle, B C Motter, M A Steinmetz and C J Duffy, “Looking and seeing: The usual functions on the parietal lobe”, ppl59–193 in Dynamic Aspects of Neocortical Function, ed G M Edelman, W E Gall and W M Cowan, Wiley 1984.

    Google Scholar 

  68. J W Gradt and R A Andersen, “Memory related motor planning activity in posterior parietal cortex of macaque” Exp.Brain Res 70, 216–220, 1988.

    Google Scholar 

  69. M A Goodale, A D Milner, L S Jakobson and D P Carey, Nature 349, 154 (1991)

    Article  Google Scholar 

  70. C Umilta “The control operations of consciousness”, 334–355 in Consciousness in Contemporary Science, ed A J Marcel and E Bisiach, Clarendon Press, Oxford (1988)

    Google Scholar 

  71. L Wishrantz, Blindsight. Clarendon Press, Oxford, 1986.

    Google Scholar 

  72. P S Goldman-Rakic “Topography of Cognition”, Ann.Rev. Neurosci. 11, 137–156, 1988.

    Article  Google Scholar 

  73. S J Dimond, “Brain Circuits for Consciousness”, Brain Behav.Evol. 13, 376–395, 1990.

    Article  Google Scholar 

  74. J G Taylor, Neural Network World 1, 4–12, 1991.

    Google Scholar 

  75. W T Miller, R S Sutton and P J Werbos (eds), Neural Networks for Control. Bradford Book, MIT Press, 1989.

    Google Scholar 

  76. F Alavi and J G Taylor, ongoing work.

    Google Scholar 

  77. A Ioannides, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this paper

Cite this paper

Taylor, J.G. (1992). Temporal Processing in Brain Activity. In: Taylor, J.G., Caianiello, E.R., Cotterill, R.M.J., Clark, J.W. (eds) Neural Network Dynamics. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2001-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2001-8_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19771-3

  • Online ISBN: 978-1-4471-2001-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics