Skip to main content

Smart Rotors

  • Conference paper
Book cover Rotordynamics ’92
  • 467 Accesses

Abstract

The phenomenon of electro-rheology relates to changes in rheology of certain dispersions upon application of electrical fields and appears as an increase to the resistance of flow, and in some cases conversion from a fluid to solid behavior, under an increasing electrical field. Most ER fluids consist of a dispersion of fine particles in a liquid medium with the addition of a surfactant agent, for example silica particles in transformer oil with water added as surfactant. The shear stress consists of the Newtonian resistance plus a constant shear which depends on the applied electric field.

Through the controlled bearing properties, active control of the rotor dynamic behavior can be achieved. Thus, for example, transition through the critical speed can be virtually eliminated through active control of the bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arguelles J, Martin HR, Pick R (1974). Rheological Model for Steady Electroviscous Flow between Parallel Plates. Jr. Mech. Eng. Sc. 16(4):232–239.

    Article  Google Scholar 

  • Bailey T, Hubbard JE (1985). Distributed Piezoelectric - Polymer Active Vibration Control of a Cantilever Beam. Journal of Guidance, Control and Dynamics 8(5):605–611.

    Article  MATH  Google Scholar 

  • Block H, Kelly JP (1988). Electro-Rheology. Jr. of Physics, D21(12):1661–1667.

    Google Scholar 

  • Boehme G (1987) Non-Newtonian Fluid Mechanics. North Holland, Amsterdam.

    MATH  Google Scholar 

  • Bonnecase RT, Brady JF(1989). Dynamic Simulation of a Suspension Forming an Electrorheological Fluid. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Brooks DA (1982). Electrorheological Fluids. Chart. Mech. Eng., vol. 63.

    Google Scholar 

  • Brooks D et al (1986). Viscoelastic Studies on an Electrorheological Fluid. Colloids Surf 18:293–312.

    Article  Google Scholar 

  • Bullough WA (1988). Electrorheological Fluids. Engineering, Feb., Tech. File 163:i–iv.

    Google Scholar 

  • Bullough WA, Stringer J.D. (1973). The Utilisation of the Electroviscous Effect in a Fluid Bearing. 3rd Int. FI. Power Symp, paper F3, Turin, Italy.

    Google Scholar 

  • Bullough WA, Foxon MB (1978). A Proportionate Coulomb and Viscously Damped Isolation System. J. Sound & Vib. 56(1):35–44.

    Article  Google Scholar 

  • Carlson JD, Duclos TG (1989). ER Fluid Clutches and Brakes — Fluid Property and Mechanical Design Considerations. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Claus RO, Jackson BS, May RG (1985). NDE of Composites by Optical Time -Domain Reflectometry in Embedded Optical Fibers. IEEE SOUTHEASTCOM 85 Proceedings (Raileigh, NC):241–245.

    Google Scholar 

  • Conrad H, Chen Y, Sprecher AF. (1989). Electrorheology of Suspensions of Zeolite Particles in Silicon Oil. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Cooper S (1963). Preliminary Investigation of Oil Films for the Control of Vibration. IME Lubrication and Wear Convention, Proceedings:305–315.

    Google Scholar 

  • Dimarogonas AD, Kollias A, Electroreological Fluid Smart Journal Bearings, Society of Tribologists and Lubrication Engineers (to appear).

    Google Scholar 

  • Dimarogonas AD, Haddad SD (1992). Vibration for Engineers. Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Dimarogonas AD, Paipetis SA (1983). Analytical Methods in Rotor Dynamics. Elsevier-Applied Science Publishers, London.

    Google Scholar 

  • Duclos TG, Coulter JP, Miller, LR. (1988). Applications for Smart Materials in the Field of Vibration Control. Proceedings, ARO Smart Materials, Structures and Mathematical Issues Workshop, Blacksburg, Va.:132–146.

    Google Scholar 

  • Eige J, Peschon J (1960). Vibration-Shock System. Int. Report, Project 3120, Stanford Univ.

    Google Scholar 

  • Gast AP, Adriani PM (1989). Microstructural Models of Electrorheological Fluids. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Ghandi MV, Thomson BS (1988). A New Generation of Ultra Advanced Intelligent Materials Featuring Electrorheological Fluids. Proceedings, ARO Smart Materials, Structures and Mathematical Issues Workshop, Blacksburg, Va.:63–68.

    Google Scholar 

  • Gorodkin RG, Korobko YV (1979). Fluid Mech.- Soviet Res. vol. 8, 48.

    Google Scholar 

  • Inoue A (1989). Study of a New Electrorheological Fluid. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Kerr J (1981). A Solid Chance to Jam Liquid Flow Lines. The Engineer, July 23:63–64.

    Google Scholar 

  • Klass DL, Martinek TW (1967). Electroviscous Fluids. I. Rheological Properties. J. Appl. Phys, v. 38, n. 1:67–74.

    Article  Google Scholar 

  • Klass DL, Martinek TW (1967).Electroviscous Fluids. II. Electrical Properties. J. Appl. Phys, v. 38, n. 1:74–80.

    Google Scholar 

  • Klingenberg DJ, Zukoski CF (1989). Structure Formation in Electrorheological Fluids. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Korobko EV, Sh’ulman ZP, (1989). The Mechanism of Visco-plastic Behavior of Electrorheological Suspensions. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Najji B, Bou-Said B, Berthe D, (1989). New Formulation for Lubrication with Non-Newtonian Fluids. ASME Journal of Tribology, 111:29–34.

    Article  Google Scholar 

  • Opperman G et al, (1989). Applications of Electroviscous Fluids as Movement Sensor Control Devices in Active Vibration Dampers. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Papanastasiou TC (1987). Flows of Materials with Yield. Journal of Rheology 31(5):385–404.

    Article  MATH  Google Scholar 

  • Reddi MM, Trumpler PR (1962). Stability of High-Speed Journal Bearings under Steady Load. 1: The Incompressible Film. ASME Journal of Engineering for Industry, ser. B, 84:351–358.

    Google Scholar 

  • Rogers CA, Robertshaw HH. (1988). Development of a Novel Smart Material. ASME Winter Annual Meeting, Chicago, Ill.

    Google Scholar 

  • Rogers CA, Barker DK, Jaeger CA. (1988) Introduction to Smart Materials and Structures. Proceedings, ARO Smart Matrials, Structures and Mathematical Issues Workshop, Blacksburg, Va.:17–28.

    Google Scholar 

  • Stangroom JE (1989). The Bingham Plastic Model of ER Fluids and its Implications. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

  • Strandrud HT (1966). Electric-field valves inside cylinder control vibrator. Hydraulics & Pnewmatics, September: 139–143.

    Google Scholar 

  • Shul’man ZP, et al (1986). Structure, Physical Properties and Dynamics of Magnetorheological Suspensions. Int. J. of Multiphase Flow v. 12, n. 6:935–955.

    Article  MathSciNet  Google Scholar 

  • Shul’man ZP, et al (1987). Characteristics of an Electrorheological Damper in a Vibration Insulator. Inz.-Fiz. Zhur, v. 52, n. 2:237–244.

    Google Scholar 

  • Sproston JL, Stevens NG, Page IM (1983). An Investigation of Torque Transmission using Electrically Stressed Dielectric Fluids. Inst. of Phys. Conf. Ser. (66) 53–58.

    Google Scholar 

  • Tayal SP, Sinhasan R, Singh D.V. (1982). Analysis of Hydrodynamic Journal Bearings Having Non-Newtonian Lubricants Using the Finite element Method. ASLE Transactions 25 (3) 410–416.

    Article  Google Scholar 

  • Winslow WM (1947). Methods and means of translating Electrical Impulses into Mechanical Force. US Patent 2,147,850.

    Google Scholar 

  • Winslow WM (1949). Induced filtration of suspensions.J. Appl. Phys, v. 20:1137–1140.

    Article  Google Scholar 

  • Winslow WM (1953). Field controlled hydraulic devise. US Patent 2,661,596.

    Google Scholar 

  • Wong W, Shaw M, (1989). Investigations of the Role of Moisture in Electrorheological Fluids. 2nd Int. Conf. on Electrorheological Fluids, Raleigh, NC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this paper

Cite this paper

Dimarogonas, A., Kollias, A. (1992). Smart Rotors. In: Goodwin, M.J. (eds) Rotordynamics ’92. Springer, London. https://doi.org/10.1007/978-1-4471-1979-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1979-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19754-6

  • Online ISBN: 978-1-4471-1979-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics