Skip to main content

Do Ultradian Oscillators Underlie the Circadian Clock in Drosophila?

  • Chapter

Abstract

Ultradian rhythms are being discovered to be nearly as ubiquitous as circadian rhythms. Here, we define ultradian periods as the range between about 1 h and 18 h. Oscillations faster than that reflect metabolic processes (Lloyd and Edwards 1984; Edmunds 1988), and 18 h is an hour less than the mean period of the shortest clearly circadian clock mutant in Drosophila melanogaster (hereafter simply Drosophila: Konopka and Benzer 1971; Hall and Kyriacou 1990). Ultradian oscillations have been found in organisms as disparate as unicells (Lloyd et al. 1982; Michel and Hardeland 1985) and mammals (Daan and Aschoff 1981). They occur in both the presence and the absence of normal circadian rhythms, and now are found also in animals that lack circadian rhythms but do exhibit tidal or lunar periodicity (Dowse and Palmer 1990, 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bargiello TA, Young MW (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci USA 81: 2142–2146

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp K, Yuen C (1979) Digital methods for signal analysis. George, Allen, Unwin, Boston

    Google Scholar 

  • Bünning E (1964) The physiological clock. Academic Press, New York

    Google Scholar 

  • Büttner D, Wollnik F (1984) Strain differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat. Behav Genet 14: 137–151

    Article  PubMed  Google Scholar 

  • Chatfield C (1989) The analysis of time series. Chapman and Hall, London

    Google Scholar 

  • Daan S (1981) Adaptive daily strategies in behavior. In: Aschoff J (ed) Biological rhythms. Plenum Press, New York, pp 275–298 (Handbook of behavioral neurobiology, vol 4 )

    Google Scholar 

  • Daan S, Aschoff J (1981) Short-term rhythms in activity. In: Aschoff J (ed) Biological rhythms. Plenum Press, New York, pp 491–498 (Handbook of behavioral neurobiology, vol 4 )

    Google Scholar 

  • Dowse H, Palmer J (1990) Evidence for ultradian rhythmicity in an intertidal crab. In: Hayes DK, Pauly JP, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology, and agriculture, pt B. Wiley-Liss, New York, pp 691–697

    Google Scholar 

  • Dowse H, Palmer J (1992) Comparative studies of tidal rhythms. XI. Ultradian and circalunidian rhythmicity in four species of semiterrestrial, intertidal crabs. Mar Behav Physiol (in press)

    Google Scholar 

  • Dowse H, Ringo J (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythms 2: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Dowse H, Ringo J (1989a) The search for hidden periodicities in biological time series revisited. J Theor Biol 139: 65–76

    Article  Google Scholar 

  • Dowse H, Ringo J (1989b) Rearing Drosophila in constant darkness produces phenocopies of period circadian clock mutants. Physiol Zool 62: 785–803

    Google Scholar 

  • Dowse H, Ringo J (1991) Comparisons between “periodograms” and spectral analysis: apples are apples after all. J Theor Biol 148: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Dowse H, Ringo J (1992) Is the circadian clock a “metaoscillator?” Evidence from studies of ultradian rhythms in Drosophila. In: Young M (ed) Molecular approaches to circadian clocks. Marcel Dekker, New York, pp 195–220

    Google Scholar 

  • Dowse H, Hall JC, Ringo J (1987) Circadian and ultradian rhythms in period mutants of Drosophila melanogaster. Behav Genet 17: 19–35

    Article  PubMed  CAS  Google Scholar 

  • Dowse H, Dushay M, Hall JC, Ringo J (1989) High-resolution analysis of locomotor activity rhythms in disconnected, a visual system mutant of Drosophila melanogaster. Behav Genet 19: 529–542

    Article  PubMed  CAS  Google Scholar 

  • Dushay MS, Rosbash M, Hall JC (1989) The disconnected visual system mutations of Drosophila melanogaster drastically disrupt circadian rhythms. J Biol Rhythms 4: 1–27

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Enright JT (1965) The search for rhythmicity in biological time-series. J Theor Biol 8: 662–666

    Article  Google Scholar 

  • Enright JT (1990) A comparison of periodograms and spectral analysis: don’t expect apples to taste like oranges. J Theor Biol 143: 425–430

    Article  Google Scholar 

  • Hall JC, Kyriacou CP (1990) Genetics of biological rhythms in Drosophila. Adv Insect Physiol 22: 221–298

    Article  Google Scholar 

  • Hamblen-Coyle M, Konopka RJ, Zwiebel LJ, Colot HV, Dowse HB, Rosbash M, Hall JC (1989) A new mutation at the period locus of Drosophila melanogaster with some novel effects on circadian rhythms. J Neurogenet 5: 229–256

    Article  PubMed  CAS  Google Scholar 

  • Helfrich C (1986) Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster. Behavioral analysis of neural mutants. J Neurogenet 3: 321–343

    Article  PubMed  CAS  Google Scholar 

  • Helfrich C, Engelmann W (1983) Circadian rhythm of the locomotor activity in Drosophila melanogaster mutants sine oculis and small optic lobes. Physiol Entomol 8: 257–272

    Article  Google Scholar 

  • Klevecz RR, Kaufmann SA, Shymko RM (1984) Cellular clocks and oscillators. Int Rev Cytol 5: 97–126

    Article  Google Scholar 

  • Klevecz RR, Pilliod J, Bolen J (1991) Autogenous formation of spiral waves by coupled chaotic attractors. Chronobiol Int 8: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68: 2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lorenz L, Yu Q, Hall JC, Rosbash M (1988) Spatial and temporal expression of the period gene in Drosophila melanogaster. Genes Dev 2: 228–238

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Edwards S (1984) Epigenetic oscillations during the cell cycles of lower eukaryotes are coupled to a clock. In: Edmunds LN Jr (ed) Cell cycle clocks. Marcel Dekker, New York, pp 27–46

    Google Scholar 

  • Lloyd D, Edwards S (1987) Temperature-compensated ultradian rhythms in lower eukaryotes: timers for cell cycles and circadian events? In: Pauly JE, Scheving LE (eds) Advances in chronobiology, pt A, Alan R Liss, New York, pp 131–151

    Google Scholar 

  • Lloyd D, Kippert F (1987) A temperature-compensated ultradian clock explains temperature-dependent quantal cell cycle times. In: Bowler K, Fuller BJ (eds) Temperature and animal cells. Cambridge University Press, Cambridge, pp 135–155 (Symp Soc Exp Biol 41 )

    Google Scholar 

  • Lloyd D, Edwards SW, Fry JC (1982) Temperature compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci USA 79: 3785–3788

    Article  PubMed  CAS  Google Scholar 

  • Michel U, Hardeland R (1985) On the chronobiology of Tetrahymena. III. Temperature compensation and temperature dependence in the ultradian oscillation of tyrosine aminotransferase. J Interdiscipl Cycle Res 16: 17–23

    Article  CAS  Google Scholar 

  • Moore-Ede M, Sulzman F (1981) Internal temporal order. In: Aschoff J (ed) Biological rhythms. Plenum Press, New York, pp 215–241 (Handbook of behavioral neurobiology, vol 4 )

    Google Scholar 

  • Oatley K, Goodwin BC (1971) The explanation and investigation of biological rhythms. In: Colquhoun WP (ed) Biological rhythms and human performance. Academic Press, New York, pp 1–38

    Google Scholar 

  • Pak WL (1975) Mutants affecting the vision of Drosophila melanogaster. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 703–733

    Google Scholar 

  • Pak WL (1979) Study of photoreceptor function using Drosophila mutants. In: Breakfield XO (ed) Neurogenetics: genetic approaches to the nervous system. Elsevier/North Holland, New York, pp 67–79

    Google Scholar 

  • Pavlidis T (1971) Populations of biochemical oscillators as circadian clocks. J Theor Biol 33: 319–338

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1958) Adaptation, natural selection, and behavior. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven, CN, pp 390–416

    Google Scholar 

  • Reddy P, Zehring WA, Wheeler DA, Pirotta V, Hadfield C, Hall JC, Rosbash M (1984) Molecular analysis of the period locus in D. melanogaster and identification of a transcript involved in biological rhythms. Cell 38: 701–710

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser A, Adler N (1986) Structure and function in circadian timing systems: evidence for multiple coupled circadian oscillators. Neurosci Biobehav Rev 10: 413–448

    Article  Google Scholar 

  • Rusak B (1977) The role of the suprachiasmatic nucleus in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J Comp Physiol 118: 145–164

    Article  Google Scholar 

  • Schwartz W, Zimmermann P (1990) Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10: 3685–3694

    PubMed  CAS  Google Scholar 

  • Siwicki K, Eastman C, Petersen G, Rosbash M, Hall J (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distributions and rhythmic changes in the visual system. Neuron 1: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Smith RF, Konopka RJ (1981) Circadian clock phenotypes of chromosome aberration with a breakpoint at the per locus. Mol Gen Genet 185: 243–251

    Article  Google Scholar 

  • Steller H, Fischbach KF, Rubin G (1987) disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50: 1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Alivisatos SGA, Richter O, Grün F, Schneider FW, Pavlidis T (1976) Mathematical background report. In: Hastings JW, Schweiger H-G (eds) The molecular basis of circadian rhythms. Dahlem Konferenzen, Berlin, pp 85–108

    Google Scholar 

  • Webb W, Dube M (1981) Temporal characteristics of sleep. In: Aschoff J (ed) Biological rhythms. Plenum Press, New York, pp 499–522 (Handbook of behavioral neurobiology, vol 4 )

    Google Scholar 

  • White L, Ringo J, Dowse H (1991) A circadian clock of Drosophila: effects of deuterium oxide and mutations at the period locus. Chronobiol Int (in press)

    Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wollnik F, Turek F (1989) SCN lesions abolish ultradian and circadian components of activity rhythms in LEW/Ztm rats. Am J Physiol 25: R1027–R1039

    Google Scholar 

  • Wollnik F, Gartner K, Büttner D (1987) Genetic analysis of circadian and ultradian locomotor activity rhythms in laboratory rats. Behav Genet 17: 167–178

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dowse, H.B., Ringo, J.M. (1992). Do Ultradian Oscillators Underlie the Circadian Clock in Drosophila?. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms in Life Processes. Springer, London. https://doi.org/10.1007/978-1-4471-1969-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1969-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1971-5

  • Online ISBN: 978-1-4471-1969-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics