BMVC91 pp 22-28 | Cite as

Boundary Detection Using Bayesian Nets

  • N. Bryson
  • C. J. Taylor
Conference paper

Abstract

This paper describes the application of Bayesian networks to the generation of explanations for the evidence provided by one or more 1-D profiles. Experiments with synthetic images and Cephalograms are described.

Keywords

Zucker Cepha 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cooper D.H., Bryson N., Taylor C.J., An Object Location Strategy using Shape and Grey-level Models, Image and Vision Computing 7,1, 50–56 (1989)CrossRefGoogle Scholar
  2. [2]
    Woods P.W., Taylor C.J., Cooper D.H., Dixon R.N., The use of geometric and grey-level models for industrial inspection, Pattern Recognition Letters, 5 (1987) 11–17CrossRefGoogle Scholar
  3. [3]
    Shacter R.D., Probabilistic Inference and Influence Diagrams, Op. Res., 36,4, pp 589–604 (1988)CrossRefGoogle Scholar
  4. [4]
    Pearl Judea, Probabilistic Reasoning in Intelligent Systems:-Networks of Plausible Inferences, Morgan Kaufmann Publishers Inc.Google Scholar
  5. [5]
    Suermondt H.J., Cooper G.F., Probabilistic Inference in Multiply Connected Belief Networks Using Loop Cutsets, Int. J. Approx. Reasoning, 4, 283–306 (1990)CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Davis, D. N., Taylor C.J., An Intelligent Visual Task System for Lateral Skull X-ray Images, Procceedings of the British Machine Vision Conference (Oxford) 291-295, September 1990Google Scholar
  7. [7]
    Hummel R.A., Zucker S.W., On the Foundations of Relaxation Labeling Processes, IEEE Trans. PAMI-5,3,267-286, May 1983Google Scholar
  8. [8]
    Kittler J., Illingworth J., Relaxation labelling algorithms — a review, Image and Vision Computing 3,4,207-216 November 1985Google Scholar

Copyright information

© Springer-Verlag London Limited 1991

Authors and Affiliations

  • N. Bryson
    • 1
  • C. J. Taylor
    • 1
  1. 1.Department of Medical BiophysicsUniversity of ManchesterManchesterUK

Personalised recommendations