SPET Instrumentation: Characteristics and New Developments

  • Mark S. George
  • Howard A. Ring
  • Durval C. Costa
  • Peter J. Ell
  • Kypros Kouris
  • Peter H. Jarritt


According to the principles of emission imaging outlined in Chap. 1, a single-photon emission tomography (SPET) system must be able to detect gamma rays along a multitude of directions. How the transition is made from infinite sampling, as required by the mathematical theory (Radon 1917; Herman 1980), to finite sampling in practice is critical (Budinger 1980; Heller and Goodwin 1987). Therefore, the type and performance of different SPET systems are dependent on how the various directions are physically realized and how well they sample the region to be reconstructed.


Gamma Camera Parallel Hole Collimator Intrinsic Spatial Resolution Photopeak Window Single Photon Emission Tomograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AAPM report no.22 (1987) Rotating scintillation camera SPECT acceptance testing and quality control. American Association of Physicists in Medicine, New YorkGoogle Scholar
  2. Bailey DL, Hutton BF, Walker PJ (1987) Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 28:844–851PubMedGoogle Scholar
  3. Budinger TF (1980) Physical attributes of single-photon tomography. J Nucl Med 21:579–592PubMedGoogle Scholar
  4. Budinger TF (1990) Advances in emission tomography: Quo vadis? J Nucl Med 31:628–631PubMedGoogle Scholar
  5. Chang LT (1978) A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS-25:638–643CrossRefGoogle Scholar
  6. DoH Publication (1988) Notes for guidance on the administration of radioactive substances to persons for the purposes of diagnosis, treatment or research. DoH, London Fleming JS (1989) A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 10:83–97Google Scholar
  7. Genna S, Smith AP (1988) The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci NS-35:654–658CrossRefGoogle Scholar
  8. Gilland DR, Tsui BMW, McCartney WH, et al (1990) Determination of the optimum filter function for SPECT imaging. J Nucl Med 29:643–650Google Scholar
  9. Heller SL, Goodwin PN (1987) SPECT instrumentation: performance, lesion detection, and recent innovations. Semin Nucl Med 17:184–99PubMedCrossRefGoogle Scholar
  10. Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Academic Press, LondonGoogle Scholar
  11. Higashi Y, Yamaoga N, Ohi J, et al (1985) Development of the Shimadzu single photon emission tomograph for head, SET-031. Shimadzu Rev 42:59–66Google Scholar
  12. Holman BL, Carvalho PA, Zimmerman RE, et al (1990) Brain perfusion SPECT using an annular single crystal camera: initial clinical experience. J Nucl Med 31:1456–1561PubMedGoogle Scholar
  13. Hor G (1988) Myocardial scintigraphy — 25 years after start. Eur J Nucl Med 13:619–636PubMedCrossRefGoogle Scholar
  14. Ichihara T (1990) Development of a high resolution SPECT system. Toshiba Med Rev 33:29–35Google Scholar
  15. Ichihara T, Fujiki Y, Iwasaki T, et al (1990) High-spatial-resolution SPECT with fan beam collimators for brain imaging (Abstract). J Nucl Med 31:869Google Scholar
  16. ICRP Publication 53 (1988) Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP. Pergamon Press, OxfordGoogle Scholar
  17. Jaszczak RJ, Chang LT, Murphy PH (1979) Single photon emission computed tomography using multi-slice fan beam collimators. IEEE Trans Nucl Sci 26:610–618CrossRefGoogle Scholar
  18. Jaszczak RJ, Greer KL, Floyd CE, et al (1984) Improved SPECT quantification using compensation of scattered photons. J Nucl Med 25:893–900PubMedGoogle Scholar
  19. Jaszczak RJ, Floyd CE, Coleman RE (1985) Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci NS-32:786–793CrossRefGoogle Scholar
  20. Keyes JW, Fahey FH, Harkness BA (1990) Tips for high quality SPECT. SNM Computer Instrumentation Council Newsletter, New YorkGoogle Scholar
  21. Kimura K, Hashikawa K, Etani H, et al (1990) A new apparatus for brain imaging: a four-head rotating gamma camera single-photon emission computed tomograph. J Nucl Med 31:603–609PubMedGoogle Scholar
  22. Koral KF, Swailem FM, Buchbinder S, et al (1990) SPECT dual-energy-window Compton correction: scatter multiplier required for quantification. J Nucl Med 31:90–98PubMedGoogle Scholar
  23. Kouris K, Elgazzar A, Affana R, et al (1990) Methodology and performance assessment of zoom SPECT. J Nucl Med Technol 18:198–203Google Scholar
  24. Kuhl DE, Edwards RQ (1963) Image separation in radioisotope scanning. Radiology 80:653–661Google Scholar
  25. Kuhl DE, Alavi A, Reivich M, et al (1975) Computerized emission transaxial tomography and determination of local brain function. In: DeBlanc HJ, Sorenson JA (eds) Noninvasive brain imaging. Society of Nuclear Medicine, New York, pp 67–79Google Scholar
  26. Lassen SA (1980) Gamma camera emission tomography: development and properties of a multi-sectional emission tomography system. Acta Radiol 363[Suppl]:l–75Google Scholar
  27. Lassen NA, Sveinsdottir E, Kanno I, et al (1978) A fast single photon emission tomograph for regional cerebral blood flow studies in man. J Comput Assist Tomogr 2:660–661CrossRefGoogle Scholar
  28. Lim CB, Gottschalk S, Walker R, et al (1985) Triangular SPECT system for 3-D total organ volume imaging: design concept and preliminary results. IEEE Trans Nucl Sci 32:741–747CrossRefGoogle Scholar
  29. Lim CB, Walker R, Pinkstaff C, et al (1986) Triangular SPECT system for 3-D total organ volume imaging: performance results and dynamic imaging capability. IEEE Trans Nucl Sci 33:501-504CrossRefGoogle Scholar
  30. Malko JA, Van Heertum RL, Gullberg GT, et al (1986) SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 27:701-705PubMedGoogle Scholar
  31. Matsuda H, Hisada K, Yamada M, et al (1990) Clinical applications of brain SPECT using the GCA-9300A. Toshiba Med Rev 33:36-42Google Scholar
  32. Moore SC, Mueller SP (1986) Inversion of the 3-D Radon transform for a multidetector, point-focused SPECT brain scanner. Phys Med Biol 31:207-221PubMedCrossRefGoogle Scholar
  33. Mueller SP, Polak JF, Kijewski MF, et al (1986) Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med 27:1729-1738PubMedGoogle Scholar
  34. NEMA NU 1 (1986) Performance measurements of scintillation cameras. National Electrical Manufacturers AssociationGoogle Scholar
  35. Radon J (1917) On the determination of functions from their integrals along certain manifolds. Math Phys Klasse 69:262-277Google Scholar
  36. Sorenson JA, Phelps ME (1987) Physics in nuclear medicine, 2nd edn. Grune and Stratton, LondonGoogle Scholar
  37. Stoddart HF, Stoddart HA (1979) A new development in single gamma transaxial tomography Union Carbide focused collimator scanner. IEEE Trans Nucl Sci 26:2710-2712CrossRefGoogle Scholar
  38. Tsui BMW, Gullberg GT (1990) The geometric transfer function for cone and fan beam collimators. Phys Med Biol 35:81-93PubMedCrossRefGoogle Scholar
  39. Tsui BMW, Gullberg GT, Edgerton ER, et al (1986) Design and clinical utility of a fan beam collimator for SPECT imaging of the head. J Nucl Med 27:810-819PubMedGoogle Scholar
  40. Williams ED (ed) (1985) An introduction to emission computed tomography. Report no. 44. The Institute of Physical Sciences in Medicine, LondonGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1991

Authors and Affiliations

  • Mark S. George
    • 1
    • 2
  • Howard A. Ring
    • 3
  • Durval C. Costa
    • 4
  • Peter J. Ell
    • 5
  • Kypros Kouris
    • 6
    • 7
  • Peter H. Jarritt
    • 8
  1. 1.Raymond Way Neuropsychiatry Research Group, Department of Clinical NeurologyInstitute of NeurologyLondonEngland
  2. 2.Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA
  3. 3.Raymond Way Neuropsychiatry Research Group, Department of Clinical NeurologyInstitute of NeurologyLondonEngland
  4. 4.Institute of Nuclear MedicineUniversity College and Middlesex School of Medicine (UCMSM)LondonEngland
  5. 5.Institute of Nuclear MedicineUniversity College and Middlesex School of Medicine (UCMSM)LondonEngland
  6. 6.Institute of Nuclear MedicineUniversity College and Middlesex School of Medicine (UCMSM)LondonEngland
  7. 7.University of KuwaitKuwait CityKuwait
  8. 8.Institute of Nuclear MedicineUniversity College and Middlesex School of Medicine (UCMSM)LondonEngland

Personalised recommendations