Skip to main content

Radiopharmaceutical Ligands and Tracers

  • Chapter
Neuroactivation and Neuroimaging with SPET

Abstract

In recent years improvements in instrumentation and radiopharmaceutical developments have broadened the scope of single-photon emission tomography (SPET) of the brain. Patients with neurological and psychiatric diseases may be better assessed. More objective parameters (i.e. brain perfusion, neuroreceptor availability, neurotransmitter utilization) can now be used to study the natural progression of disease and to determine its response to either established or new therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker JHL, Campbell JK, Houser OW, et al (1974) Computer assisted tomography of the head. An early evaluation. Mayo Clin Proc 49:17–27

    PubMed  Google Scholar 

  • Biersack HJ, Coenen HH, Stöcklin G, et al (1989) Imaging of brain tumours with L-3-[123I]Iodo-methyl tyrosine and SPECT. J Nucl Med 30:110–112

    PubMed  CAS  Google Scholar 

  • Black HL, Hawkins RA, Kim KT, et al (1989) Thallium-201 (SPECT): a quantitative technique to distinguish low grade from malignant brain tumours. J Neurosurg 71:342–346

    Article  PubMed  CAS  Google Scholar 

  • Bloom FE (1985) Neurotransmitter diversity and its functional significance. J R Soc Med 78:189–192

    PubMed  CAS  Google Scholar 

  • Bossuyt A, Pirotte R, Chirico A, et al (1990a) Whole body dosimetry of Tc-99m-MRP 20: the result of a phase I clinical trial. Eur J Nucl Med 16:432

    Google Scholar 

  • Bossuyt A, Pirotte R, Chirico A, et al (1990b) Tc-99m-MRP 20, a new brain perfusion agent suitable for SPECT imaging. Eur J Nucl Med 16:418

    Google Scholar 

  • Bossuyt A, Pirotte R, Carroll MJ, et al (1991) Tc-99m-MRP 20, a new brain perfusion agent suitable for SPECT imaging. In: Schmidt HAE, van der Schoot JB (eds) Nuclear medicine. The state of the art of nuclear medicine in Europe. Schattauer, Stuttgart New York, pp 222–224

    Google Scholar 

  • Bradbury MWB (1985) Transport across the cerebral endothelium. Circ Res 57:213–222

    PubMed  CAS  Google Scholar 

  • Carril JM, MacDonald AF, Dendy PP, et al (1979) Clinical scintigraphy: value of adding emission computed tomographic studies to conventional pertechnetate images (512 cases). J Nucl Med 20:1117–1123

    PubMed  CAS  Google Scholar 

  • Clark SEM, Harding K, Buxton TM (1990) The current cost of nuclear medicine. Nucl Med Commun 11:527–538

    Article  Google Scholar 

  • Costa DC, Ell PJ, Cullum ID, et al (1986) The in vivo distribution of 99Tcm-HM-PAO in normal man. Nucl Med Commun 7:647–658

    PubMed  CAS  Google Scholar 

  • Costa DC, Verhoeff NPLG, Cullum ID, et al (1990) In vivo characterisation of 3-iodo-6-methoxybenzamide 123-I in humans. Eur J Nucl Med 16:813–816

    Article  PubMed  CAS  Google Scholar 

  • Crawley JCW, Smith T, Veall N, et al (1983) Dopamine receptors displayed in living human brain with 77Br-p-bromospiperone. Lancet I:975

    Article  Google Scholar 

  • Deland FH (1971) Scanning in cerebral vascular disease. Semin Nucl Med 1:31–40

    Article  PubMed  CAS  Google Scholar 

  • Dempsey EW, Wislocki GB (1955) An electron microscopic study of the blood-brain barrier in the rat. J Biophys Biochem Cytol 1:245

    Article  PubMed  CAS  Google Scholar 

  • Ell PJ, Deacon JM, Ducassou D, et al (1980) Emission and transmission brain tomography. BMJ 280:438–440

    Article  PubMed  CAS  Google Scholar 

  • Ell PJ, Cullum I, Costa DC, et al (1985) A new regional cerebral blood flow mapping with Tc-99m-labelled compound. Lancet 11:50–51

    Article  Google Scholar 

  • Fischer RJ, Miale A Jr (1972) Evaluation of cerebral vascular disease with radionuclide angiography. Stroke 3:1–9

    Article  PubMed  CAS  Google Scholar 

  • Glasco JL, Currier RD, Goodrich JK, et al (1965) Brain scans at varied intervals following CVA. J Nucl Med 6:902–916

    Google Scholar 

  • Gruber ML, Hochberg FH (1990) Editorial: systematic evaluation of primary brain tumours. J Nucl Med 31:969–971

    PubMed  CAS  Google Scholar 

  • Hill TC, Lovett RD, Zimmerman RE (1980) Quantification of Tc-99m glucoheptonate uptake in brain lesions with emission-computed tomography. In: Single photon emission computed tomography and other selected computer topics. Society of Nuclear Medicine, New York, pp 169–176

    Google Scholar 

  • Holman BL, Hellman RS, Goldsmith SJ, et al (1989) Biodistribution, dosimetry and clinical evaluation of technetium-99m ethyl cysteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018–1024

    PubMed  CAS  Google Scholar 

  • Hopkins GG, Kristensen KAB (1973) Rapid sequential scintiphotography in the radionuclide detection of subdural hematoma. J Nucl Med 14:288–290

    PubMed  CAS  Google Scholar 

  • Hounsfield GN (1973) Computerised transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Hung JC, Volkert WA, Holmes RA (1989) Stabilization of technetium-99m-D,L-hexamethylpropyleneamineoxime (99mTc-D,L-HMPAO) using gentisic acid. Nucl Med Biol 16:675–680

    CAS  Google Scholar 

  • Iversen LL (1982) Neurotransmitters and CNS disease. The Lancet II:914–918

    Article  Google Scholar 

  • Kaplan WD, Takronan T, Morris H, et al (1989) Thallium-201 brain tumour imaging: a comparative study with pathologic correlation. J Nucl Med 28:47–52

    Google Scholar 

  • Kim KT, Black KL, Marciano D, et al (1990) Thallium-201 SPECT imaging of brain tumours: methods and results. J Nucl Med 31:965–969

    PubMed  CAS  Google Scholar 

  • Knapp WH, Von Kummaer R, Kubler W (1986) Imaging of cerebral blood flow-to-volume distribution using SPECT. J Nucl Med 27:465–470

    PubMed  CAS  Google Scholar 

  • Kung HF, Blau M (1980) Synthesis of selenium-75 labelled tertiary diamines: new brain imaging agents. J Med Chem 23:1127–1130

    Article  PubMed  CAS  Google Scholar 

  • Léveillé J, Demonceau G, De Roo M, et al (1989) Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, part 2. Biodistribution and brain imaging in humans. J Nucl Med 30:1902–1910

    PubMed  Google Scholar 

  • Libson K, Messa C, Kwiatkowski M et al (1989) 99mTc-MRP-20. A new class of neutral complex with implications for brain scintigraphy. J Nucl Med All Sci 33:305–306

    Google Scholar 

  • Maynard CD, Witcofski RL, Janeway R et al (1969) Radioisotopic arteriography as an adjunct to the brain scan. Radiology 92:908–912

    PubMed  CAS  Google Scholar 

  • Mazière B, Mazière M (1990) Where have we got with neuroreceptor mapping of the human brain? Eur J Nucl Med 16:817–835

    Article  PubMed  Google Scholar 

  • Miller JW, Hess A (1958) The blood-brain barrier: an experimental study with vital dyes. Brain 81:248

    Article  Google Scholar 

  • Morgan GF, Thornback JR, Deblaton M et al (1990) Development of a novel class of lipophilic technetium complexes designed to mimic rCBF (abstract 131). Eur J Nucl Med 16:423

    Google Scholar 

  • Mountz JM, Stafford-Schuck K, McKeeven PE, et al (1988) Thallium-201 tumour/cardiac ratio estimation of residual astrocytoma. J Neurosurg 68:705–709

    Article  PubMed  CAS  Google Scholar 

  • Neirinckx RD, Canning LR, Piper IM, et al (1987) Technetium-99m, d, 1-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 18:191–202

    Google Scholar 

  • Perry EK (1991) Neurotransmitters and diseases of the brain. Br J Hosp Med 45:73–83

    PubMed  CAS  Google Scholar 

  • Reese TS, Karnovski MJ (1968) Fine structural localisation of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207

    Article  Google Scholar 

  • Rollo FD, Cavalieri RR, Born M, et al (1977) Comparative evaluation of 99mTcGH, 99mTcO4 and 99mTcDTPA as brain imaging agents. Radiology 123:379–383

    PubMed  CAS  Google Scholar 

  • Ryerson TW, Spies SM, Singh NB, et al (1978) A quantitative clinical comparison of three 99mtechnetium labelled brain imaging radiopharmaceuticals. Radiology 127:429–432

    PubMed  CAS  Google Scholar 

  • Sharp FF, Smith FW, Gemmell HG, et al (1986) Technetium-99m-HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med 27:171–177

    PubMed  CAS  Google Scholar 

  • Siccardi AG, Buraggi GL, Natali PG, et al (1989) Technetium-99m-ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 30:599–604

    Google Scholar 

  • Uzler JM, Bennett LR, Mena I, et al (1975) Human CNS perfusion scanning with 123I-iodoantipyrine. Radiology 115:197–200

    Google Scholar 

  • Van Nerom C, Bormans G, De Beukelaer C, et al (1990) Metabolism of 9mTc-ECD in organ homogenates of baboon. In: Schmidt HAE, Chambron PD (eds) Nuclear medicine. Quantitative analysis in imaging and function. Schattauer, Stuttgart New York, pp 87–89

    Google Scholar 

  • Van Royen EA, De Bruine JF, Hill TC, et al (1987) Cerebral blood flow imaging with thallium-201 diethyldithiocarbamate SPECT. J Nucl Med 28:178–183

    PubMed  Google Scholar 

  • Verbruggen AM (1990) Radiopharmaceuticals: state of the art. Eur J Nucl Med 17:346–364

    Article  PubMed  CAS  Google Scholar 

  • Verhoeff NPGL (1991) Pharmacological implications for neuroreceptor imaging. Eur J Nucl Med (in press)

    Google Scholar 

  • Vyth A, Fennema PJ, Van der Schoot JB (1983) 201Tl-diethyldithiocarbamate: a possible radiopharmaceutical for brain imaging. Pharmacol Weekbl Sci 5:213–216

    Article  CAS  Google Scholar 

  • Wagner HN, Burner HD, Dannals RF, et al (1983) Imaging dopamine receptors in the human brain by PET. Science 221:1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Walovitch RC, Williams SJ, Lafrance ND (1990) Radiolabelled agents for SPECT imaging of brain perfusion. Nucl Med Biol 17:77–83

    CAS  Google Scholar 

  • Waxman AD, Tanacescu D, Siemsen JK, et al (1976) Technetium-99m glucoheptonate as a brain scanning agent: critical comparison with pertechnetate. J Nucl Med 17:345–348

    PubMed  CAS  Google Scholar 

  • White DR, Muss HB, Cowan RJ (1976) Brain scanning in patients with advanced lung cancer. Clin Nucl Med 1:93–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

George, M.S., Ring, H.A., Costa, D.C., Ell, P.J., Kouris, K., Jarritt, P.H. (1991). Radiopharmaceutical Ligands and Tracers. In: Neuroactivation and Neuroimaging with SPET. Springer, London. https://doi.org/10.1007/978-1-4471-1901-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1901-2_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1903-6

  • Online ISBN: 978-1-4471-1901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics