Advertisement

The Physiology of Micturition

  • C. R. Chapple

Abstract

Before considering the investigation of disorders of micturition it is first essential to analyse the neural mechanisms which control bladder function. Bladder function can be subdivided into two interrelated yet distinct phases, urine storage and its controlled voiding at an appropriate time and place. Most contemporary knowledge is based on studies with experimental animals. Although it can be difficult and is often misleading to relate findings from animal models to man, such information is essential since human data on the central nervous control of the bladder can only be derived from clearly defined clinical syndromes and isolated spinal cord lesions.

Keywords

Urinary Bladder Bladder Neck Vasoactive Intestinal Polypeptide Human Bladder Muscle Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, T.E., Gu, J., Allen, J.M., Tatemoto, K., Polak, J.M., Bloom, S.R. 1984. Neuropeptide Y in the human male genital tract. Life Sci. 35: 2643–2648PubMedCrossRefGoogle Scholar
  2. Ahlquist, R.P. 1948. A study of the adrenotropic receptors. Am. J. Physiol. 53: 586–600Google Scholar
  3. Alm, P., Alumets, J., Hakanson, R., Sundler, F. 1977. Peptidergic (vasoactive intestinal polypeptide) nerves in the genitourinary tract. Neuroscience 2: 751–754PubMedCrossRefGoogle Scholar
  4. Alm, P., Alumets, J., Hakanson, R., et al. 1980. Origin and distribution of vasoactive intestinal polypeptide ( VIP) nerves in the genito-urinary tract. Cell Tissue Res. 205: 337–347PubMedCrossRefGoogle Scholar
  5. Ambache, N. 1955. The use and limitations of atropine for pharmacological studies on autonomic effectors. Pharmacol. Rev. 7: 467–494PubMedGoogle Scholar
  6. Ambache, N., Aboo Zar, M.A. 1970. Non-cholinergic transmission by post-ganglionic motor neurones in the mammalian bladder. J. Physiol. ( Lond ) 210: 761–783Google Scholar
  7. Andersson, K.E., Sjogren, C. 1982. Aspects on the physiology and pharmacology of the bladder and urethra. Progr. Neurobiol. 19: 71–89CrossRefGoogle Scholar
  8. Andersson, K.E., Mattiasson, A., Sjogren, C. 1983. Electrically induced relaxation of the noradrenaline contracted isolated urethra from rabbit and man. J. Urol. 129: 210–213PubMedGoogle Scholar
  9. Andersson P.O., Bloom, S.R., Mattiasson, A., Uvelius, B. 1987. Bladder vasodilatation and release of vasoactive intestinal polypetide from the urinary bladder of the cat in response to pelvic nerve stimulation. J. Urol. 138: 671–673PubMedGoogle Scholar
  10. Awad, A.A., Bruce, G., Carrocampi, J.W., Lin, M., Marks, G.S. 1974. Distribution of α- and ß-adrenoceptors in human urinary bladder. Br. J. Pharmacol. 50: 525–529PubMedGoogle Scholar
  11. Barrington, F.J.F. 1914. The nervous mechanism of micturition. Q. J. Exp. Physiol. 8: 33–71Google Scholar
  12. Barrington, F.J.F. 1931. The component reflexes of micturition in the cat. Parts 1 & 2. Brain 54: 177–188CrossRefGoogle Scholar
  13. Barrington, F.J.F. 1941. The component reflexes of micturition in the cat. Part 3. Brain 64: 239–243CrossRefGoogle Scholar
  14. Beaumont, A. 1983. Putative peptide neurotransmitters. The opioid peptides. Int. Rev. Exp. Pathol. 25: 279–305Google Scholar
  15. Booth, A.M., Ostrowski, N., McLinden, S., Lowe, I., De Groat, W.C. 1981. An analysis of the inhibitory effects of leucine enkephalin on transmission in vesical parasympathetic ganglia of the cat. Soc. Neurosci. Symposia Abstract 8: 214Google Scholar
  16. Burnstock, G. 1986a. The changing face of autonomic neurotransmission. Acta Physiol. Scand. 126: 67–91Google Scholar
  17. Burnstock, G. 1986b. Autonomic neuromuscular junctions: current developments and future directions. J. Anat. 146:1–30 Carpenter, F.G., Rand, S.A. 1965. Relation of acetylcholine release to responses of the rat urinary bladder. J. Physiol. ( Lond ) 180: 371–382Google Scholar
  18. Cowan, W.D., Daniel, E.E. 1983. Human female bladder and its non-cholinergic contractile function. Can. J. Physiol. Pharmacol. 61: 1236–1246PubMedCrossRefGoogle Scholar
  19. Craggs, M.D., Stephenson, J.D. 1985. Bladder electromyograms and function in monkeys after atropine. Br. J. Urol. 57: 341–345PubMedCrossRefGoogle Scholar
  20. Cullumbine, H., McKee, W.H.E., Creasey, N.H. 1955. The effects of atropine sulphate upon healthy male subjects. Q. J. Exp. Physiol. 30: 309–319Google Scholar
  21. Dale, H.H. 1933. Nomenclature of fibres in the autonomic system and their effects. J. Physiol. ( Lond ) 80: 10–11Google Scholar
  22. Dale, H.H., Gaddum, J.H. 1930. Reactions of denervated voluntary muscle and their bearing on the mode of action of parasympathetic and related nerves. J. Physiol. ( Lond ) 70: 109–144Google Scholar
  23. Dean, D.M., Downie, J.W. 1978. Contribution of adrenergic and “purinergic” neurotransmission to contraction in rabbit detrusor. J. Pharmacol. Exp. Ther. 207: 431–445PubMedGoogle Scholar
  24. De Groat, W.C., Kawatani, M. 1985. Neural control of the urinary bladder: possible relationship between peptidergic inhibitory mechanisms and detrusor instability. Neurourol. Urodynamics 4: 285–300Google Scholar
  25. Denny-Brown, D, Robertson, E.G. 1933a. On the physiology of micturition. Brain 56: 149–190CrossRefGoogle Scholar
  26. Denny-Brown, D., Robertson, E.G. 1933b. The state of the bladder and its sphincters in complete transverse lesions of the spinal cord and cauda equina. Brain 56: 397–462CrossRefGoogle Scholar
  27. Dion, S., Corcos, J., Carmel, M., Drapeau, G., Regoli, D. 1988. Substance P and neurokinins as stimulants of the human isolated urinary bladder. Neuropeptides 11: 83–87PubMedCrossRefGoogle Scholar
  28. Dumsday, B. 1971. Atropine resistance of the urinary bladder innervation. J. Pharm. Pharmacol. 23: 222–225Google Scholar
  29. Eaton, A.C., Bates, C.P. 1982. An in vitro physiological study of normal and unstable human detrusor muscle. Br. J. Urol. 54: 653–657Google Scholar
  30. Edge, N.D. 1955. A contribution to the innervation of the urinary bladder of the cat. J. Physiol. ( Lond ) 127: 54–68Google Scholar
  31. Edvardsen, P. 1968a. Nervous control of urinary bladder in cats. 1. The collecting phase. Acta Physiol. Scand. 72: 157–171Google Scholar
  32. Edvardsen, P. 1968b. Nervous control of urinary bladder in cats. III. Effects of autonomic blocking agents in the intact animal. Acta Physiol. Scand. 99: 345–352Google Scholar
  33. Edvardsen, P., Setekleiv, J. 1968. Distribution of adrenergic receptors in the urinary bladder of cats, rabbits and guinea pigs. Acta Pharmacol. Toxicol. 26: 437–445Google Scholar
  34. Elliott, T.R. 1907. The innervation of the bladder and urethra. J. Physiol. ( Lond ) 25: 367–445Google Scholar
  35. Erspamer, V., Ronzoni, G., Falconieri-Erspamer, G. 1981. Effects of active peptides on the isolated muscle of the human urinary bladder. Invest. Urol. 18: 302–304Google Scholar
  36. Gibbins, I.L., Furness, J.B., Costa, M. 1985. Pathway-specific patterns of the co-existence of substance P, calcitonin generelated peptide, cholecystokinin and dynorphin in neurones of the dorsal root ganglia of the guinea pig. Cell Tissue Res. 248: 417–437Google Scholar
  37. Goodman, E.C., Iverson, L.L. 1986. Calcitonin gene-related peptide: novel neuropeptide. Life Sci. 38: 2169–2178PubMedCrossRefGoogle Scholar
  38. Gu, J., Restorick, J.M., Blank, M.A., et al. 1983a. Vasoactive intestinal polypeptide in the normal and unstable bladder. Br. J. Urol. 55: 645–647CrossRefGoogle Scholar
  39. Gu, J., Polak, J.M., Polak, P.L. 1983b. Peptidergic innvervation of the human genital tract. J. Urol. 130: 386–391PubMedGoogle Scholar
  40. Henderson, V.E., Roepke, M.H. 1934. The role of acetylcholine in bladder contractile mechanisms and in parasympathetic ganglia. J. Pharmacol. Exp. Ther. 51: 97–111Google Scholar
  41. Henderson, V.E., Roepke, M.H. 1935. The urinary bladder mechanisms. J. Pharmacol. Exp. Ther. 54: 408–414Google Scholar
  42. Hindmarsh, J.R., Idowu, A.O., Yeates, W.W., Aboo Zar, M.A. 1977. Pharmacology of electrically evoked contraction of the bladder. Br. J. Pharmacol. 61: 115PGoogle Scholar
  43. Hisamitsu, T., Roques, B.P., De Groat, W.C. 1982. The role of enkephalins in the sacral parasympathetic reflex pathways to the urinary bladder of the cat. Soc. Neurosci. Symposia Abstract 8: 227Google Scholar
  44. Holt, S.E., Cooper, M., Wyllie, J.H. 1985. Evidence for purinergic transmission in mouse bladder and for modulation of responses to electrical stimulation by 5-hydroxytryptamine. Eur. J. Pharmacol. 116: 105–111PubMedCrossRefGoogle Scholar
  45. Husted, S., Sjogren, C., Andersson, K.E. 1983. Direct effects of adenosine and adenine nucleotides on isolated human urinary bladder and their influence on electrically induced contractions. J. Urol. 130: 392–398PubMedGoogle Scholar
  46. Ingersoll, E.H., Jones, L.L., Hegre, E.S. 1954. Urinary bladder response to unilateral stimulation of hypogastric nerves. J. Urol. 72: 178–190PubMedGoogle Scholar
  47. Ingersoll, E.H., Jones, L.L. 1958. Effect upon the urinary bladder of unilateral stimulation of hypogastric nerves in the dog. Anat. Rec. 130: 605–615Google Scholar
  48. Ingersoll, E.H., Jones, L.L. 1962. Effect of stimulation of autonomic outflow to urinary bladder of rhesus monkey. Proc. Soc. Exp. Biol. Med. 110: 858–861Google Scholar
  49. Jancso, G., Kiraly, E., Jancso-Gabor, A. 1977. Pharmacologically induced selective degeneration of chemo-sensitive primary sensory neurons. Nature 270: 741–742PubMedCrossRefGoogle Scholar
  50. Jancso, G., Kiraly, E., Joo, F., Such, G., Nagy, A. 1985. Selective degeneration of a subpopulation of primary sensory neurones in the adult rat. Neurosci. Lett. 59: 209–214PubMedCrossRefGoogle Scholar
  51. Jensen, D. 1981. Pharmacological studies of the uninhibited neurogenic bladder. Acta Neurol. Scand. 64: 175–195Google Scholar
  52. Johns, A. 1979. The effect of VIP on the urinary bladder and taenia coli of the guinea-pig. Can. J. Physiol. Pharmacol. 57:106–108 Kalbfleisch, R.E., Daniel, E.E. 1987. The role of substance P in the human urinary bladder. Arch. Int. Pharmacodyn. 285:238–248 Kinder, R.B., Mundy, A.R. 1985a. Inhibition of spontaneous contractile activity in isolated human detrusor muscle strips by vasoactive intestinal polypeptide. Br. J. Urol. 57: 20–23Google Scholar
  53. Kinder, R.B., Mundy, A.R. 1985b. Atropine blockade of nerve-mediated stimulation of the human detrusor. Br. J. Urol. 57: 418–421CrossRefGoogle Scholar
  54. Kinder, R.B., Restorick, J.M., Mundy, A.R. 1985. Vasoactive intestinal polypeptide in the hyperreflexic neuropathic bladder. Br. J. Urol. 57: 289–291Google Scholar
  55. Klarskov, P., Gerstenberg, T., Ramirez, D., Hald, T. 1983. Non-cholinergic, non-adrenergic nerve mediated relaxation in trigone, bladder neck and urethral smooth muscle in vitro. J. Urol. 129: 848–850PubMedGoogle Scholar
  56. Klarskov, P., Gerstenberg, T., Hald, T. 1984a. Vasoactive intestinal polypeptide influence on lower urinary tract smooth muscle from human and pig. J. Urol. 131: 1000–1004PubMedGoogle Scholar
  57. Klarskov, P., Fahrenkrug, J., Holm-Bentzen, M., et al. 1984b. Vasoactive intestinal polypeptide (VIP) concentration in bladder neck, smooth muscle and VIP influence on urodynamic parameters. Proc. 14th Meeting of the Int. Cont. Soc., pp 228–230Google Scholar
  58. Klarskov, P. 1987a. Enkephalin inhibits presynaptically the contractility of urinary tract smooth muscle. Br. J. Urol. 59:31–35 Klarskov, P. 1987b. Non-cholinergic non-adrenergic nerve mediated relaxation of pig and human detrusor muscle in vitro. Br. J. Urol. 59: 414–419Google Scholar
  59. Klarskov, P. 1987c. Non-cholinergic non-adrenergic inhibitory nerve responses of bladder outlet smooth muscle in vitro. Br. J. Urol. 60: 337–342Google Scholar
  60. Klarskov, P., Holm-Bentzen, M., Norgaard, T., Ottesen, B., Walter, S., Hald, T. 1987. Vasoactive intestinal polypeptide concentration in human bladder neck smooth muscle and its influence on urodynamic parameters. Br. J. Urol. 60: 113–118PubMedCrossRefGoogle Scholar
  61. Klevmark, B. 1977. Motility of the urinary bladder in cats during filling at physiological rates. II. Effects of extrinsic bladder denervation on intravesical pressure patterns. Acta Physiol. Scand. 101: 176–184Google Scholar
  62. Kondo, M., Taniyama, K., Tanaka, C. 1985. Histamine H1-receptors in the guinea-pig urinary bladder. Eur. J. Pharmacol. 114: 89–92PubMedCrossRefGoogle Scholar
  63. Kuru, M. 1965. Nervous control of micturition. Physiol. Rev. 45: 425–494PubMedGoogle Scholar
  64. LaMotte, C.C., de Lanerolle, N.C. 1981. Human spinal neurons innervation by both substance P and enkephalin. Neuroscience 6: 713–723Google Scholar
  65. Langley, J.N., Anderson, H.K. 1895a. The innervation of the pelvic and adjoining viscera. Part 2. The bladder. J. Physiol. ( Lond ) 19: 85–139Google Scholar
  66. Langley, J.N., Anderson, H.K. 1895b. The innervation of the pelvic and adjoining viscera. Part 1. J. Physiol. ( Lond ) 19: 71–84Google Scholar
  67. Larsen, J.J. 1979. σ- and β-adrenoceptors in the detrusor muscle and bladder base of the pig and (3-adrenoceptors in the detrusor muscle of man. Br. J. Pharmacol. 65: 215–222Google Scholar
  68. Larsson, L.L, Childers, S., Synder, S.H. 1979. Met- and leu-enkephalin immunoreactivity in seperate neurones. Nature 282: 407–410PubMedCrossRefGoogle Scholar
  69. Learmonth, J.R. 1931. A contribution to the neurophysiology of the urinary bladder in man. Brain 54: 147–176CrossRefGoogle Scholar
  70. Le Greves, P., Nyberg, F., Terenius, L., Hokfelt, T. 1985. Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmacol. 115: 309–311PubMedCrossRefGoogle Scholar
  71. Lembeck, F. 1953. Zur Frage der zentralen Ubertragung afferenter impulse. III. Das vorkommen und die Bedeutung der Substanz p in den dorsalen Wurzeln des Ruckenmarks. Naunyn Schmiedebergs Arch. Pharmakol. 219: 197–213Google Scholar
  72. Levin, R.M., Wein, A.J. 1981. Effect of vasoactive intestinal polypeptide on the contractility of the rabbit urinary bladder. Urol. Res. 9: 217–218Google Scholar
  73. Levin, R.M., Staskin, D.R., Wein, A.J. 1982. The muscarinic cholinergic binding kinetics of the human urinary bladder. Neurourol. Urodynamics 1: 221–226Google Scholar
  74. Lund, C.J., Benjamin, J.A., Tristan, T.A., Fullerton, R.E., Ramsey, G.H., Watson, J.S. 1957. Cinefluorographic studies of the bladder and urethra in women. I. Urethrovesical relationships in voluntary and involuntary urination. Am. J. Obstet. Gynecol. 74: 896–908PubMedGoogle Scholar
  75. Lundberg, J.M. 1981. Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta Physiol. Scand. (suppl.) 496: 1–57Google Scholar
  76. Lundberg, J.M., Torssell, L., Sollevi, A., et al. 1985. Neuropeptide Y sympathetic vascular control in man. Regul. Pept. 13:41–52PubMedCrossRefGoogle Scholar
  77. Maggi, C.A., Santicioli, P., Grimaldi, G., Meli, A. 1983. The effect of peripherally administered GAB A on spontaneous contractions of rat urinary bladder in vivo. Gen. Pharmacol. 14: 455–458PubMedCrossRefGoogle Scholar
  78. Maggi, C.A., Santicioli, P., Meli, A. 1984. The effect of capsaicin on micturition reflex in urethrane anaesthetised rats. Proc. Int. Continence Soc. pp 217–218Google Scholar
  79. Maggi, C.A., Santicioli, P., Meli, A. 1985. GABAa and GABAb receptors in detrusor strips from guinea-pig bladder dome. J. Autonom. Pharmacol. 5: 55–64Google Scholar
  80. Maggi, C.A., Meli, A. 1986. The role of neuropeptides in the regulation of the micturition cycle. J. Autonom. Pharmacol. 6: 133–162Google Scholar
  81. Maggi, C.A., Barbanti, G., Santicioli, P., et al. 1989. Cystometric evidence that capsaicin- sensitive nerves modulate the afferent branch of micturition reflex in humans. J. Urol. 142: 150–154PubMedGoogle Scholar
  82. Mattiasson, A., Ekblad, E., Sundler, R.F., Uvelius, B. 1985. Origin and distribution of neuropeptide Y, vasoactive intestinal polypeptide and substance P containing nerve fibres in the urinary bladder of the rat. Cell Tissue Res. 239: 141–146PubMedCrossRefGoogle Scholar
  83. Mattiasson, A., Andersson, K.E., Elbadawi, A., Morgan, E., Sjogren, C. 1987. Interaction between adrenergic and cholinergic nerve terminals in the urinary bladder of rabbit, cat and man. J. Urol. 137: 1017–1019PubMedGoogle Scholar
  84. Miller, R.J. 1981. Peptides as neurotransmitters focus on the enkephalins and endorphins. Pharmacol. Ther. 12: 73–108Google Scholar
  85. Mulderry, P.K., Ghatei, M.A., Rodrigo, J., et al. 1985. CGRP in cardiovascular tissues of the rat. Neuroscience 14: 947–954PubMedCrossRefGoogle Scholar
  86. Nathan, P.W., Smith, M.C. 1951. The centripetal pathway from the bladder and urethra within the spinal cord. J. Neurol. Neurosurg. Psychiatr. 14: 262–280Google Scholar
  87. Nathan, P.W. 1956. Sensations associated with micturition. Br. J. Urol. 28: 126–131PubMedCrossRefGoogle Scholar
  88. Nergardh, A., Boreus, L.O. 1972. Autonomic receptor function in the lower urinary tract of man and cat. Scand. J. Urol. Nephrol. 6: 32–36Google Scholar
  89. Nergardh, A. 1975. Autonomic receptor functions in the lower urinary tract: a survey of recent experimental results. J. Urol. 113: 180–185PubMedGoogle Scholar
  90. Nergardh, A., Boreus, L.O., Naglo, A.S. 1977. Characterisation of the adrenergic p receptor in the urinary bladder of man and cat. Acta Pharmacol. Toxicol. 40: 14–21CrossRefGoogle Scholar
  91. Nilvebrant, L., Andersson, K.E., Mattiasson, A. 1985. Characterisation of the muscarinic cholinoceptors in the human detrusor. J. Urol. 134: 418–423PubMedGoogle Scholar
  92. Nishizawa, O., Fukuda, T., Matsuzaki, A., Moriya, I., Harada, T., Tsuchida, S. 1985. The role of the sympathetic nerves in bladder and urethral sphincter function during the micturition cycle in the dog evaluated by pressure flow EMG study. J. Urol. 134: 1259–1261PubMedGoogle Scholar
  93. Norlen, L. 1977. Efects on the urinary bladder and urethra of different pharmacological treatments. An in vitro study in normal and parasympathetically denervated cats. Scand. J. Urol. Nephrol. 11: 7–16Google Scholar
  94. Norlen, L., Sundin, T., Waagstein, F. 1978, (adrenoceptor stimulation of the human urinary bladder in vitro. Acta Pharmacol. Toxicol, (suppl.) 43: 26–30Google Scholar
  95. Porter, N.H. 1962. A physiological study of the pelvic floor in rectal prolapse. Ann. R. Coll. Surg. 31: 379–404Google Scholar
  96. Raezer, D.M., Wein, J., Jacobwitz, D., Corriere, J.N.J. 1973. Autonomic innervation of canine urinary bladder. Cholinergic and adrenergic contributions and interaction of sympathetic and parasympathetic nervous systems in bladder function. Urology 2: 211–214Google Scholar
  97. Rohner, T.J., Hannigan, J.D., Sanford, E.J. 1971. Altered in vitro adrenergic responses of dog detrusor muscle after chronic bladder outlet obstruction. Urology 11: 357–361CrossRefGoogle Scholar
  98. Said, S.I., Mutt, V. 1970. Polypeptide with broad biological activity. Isolation from small intestine. Science 169: 1217–1218PubMedCrossRefGoogle Scholar
  99. Sharkey, K.A., Williams, R.G., Schultzberg, M., Dockray, G. 1983. Sensory substance P innervation of the urinary bladder possible site of action of capsaicin in causing urinary retention in rats. Neuroscience 10: 861–868PubMedCrossRefGoogle Scholar
  100. Sibley, G.N.A. 1984a. A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J. Physiol. ( Lond ) 354: 431–443Google Scholar
  101. Sibley, G.N.A. 1984b. The response of the bladder to lower urinary tract obstruction. DM Thesis, University of OxfordGoogle Scholar
  102. Simonds, W.F., Booth, A.M., Thor, K.B., Ostrowski, N.L., Nagel, J.R., De Groat, W.C. 1983. Parasympathetic ganglia naloxone antagonises inhibition by leucine-enkephalin and GABA. Brain Res. 271: 365–370PubMedCrossRefGoogle Scholar
  103. Sjogren, C., Andersson, K.E., Husted, S., Mattiasson, A., Moller-Madsen, B. 1982. Atropine resistance of transmurally stimulated isolated human bladder muscle. J. Urol. 128: 1368–1371PubMedGoogle Scholar
  104. Sjogren, C., Andersson, K.E., Mattiasson, A. 1985. Effects of vasoactive intestinal polypeptide on isolated urethral and urinary bladder smooth muscle from rabbit and man. J. Urol. 133: 136–140PubMedGoogle Scholar
  105. Sundin, T., Dahlstrom, A. 1973. The sympathetic innervation of the urinary bladder in the normal state and after parasympathetic denervation at the spinal root level. Scand. J. Urol. Nephrol. 7: 131–149PubMedCrossRefGoogle Scholar
  106. Sundin, T., Dahlstrom, A., Norlen, L., Svedmyr, N. 1977. The sympathetic innervation and adrenoceptor function of the human lower urinary tract in the normal state and after parasympathetic denervation. Invest. Urol. 14: 332–328Google Scholar
  107. Sundler, F., Brodin, E., Ekblad, E., Hakansson, R., Uddman, R. 1985. Sensory nerve fibres distribution of substance P, neurokinin A and calcitonin gene-related peptide. In: Tachykinin antagonists. Hakansson, R., Sundler, F., eds. Amsterdam, Elsevier, pp 3–14Google Scholar
  108. Szolesanyi, J. 1977. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J. Physiol. 73: 251–259Google Scholar
  109. Taira, N. 1972. The autonomic pharmacology of the bladder. Ann. Rev. Pharmacol. 12: 197–208PubMedCrossRefGoogle Scholar
  110. Tanagho, E.A., Miller, E.R. 1970. Initiation of voiding. Br. J. Urol. 42: 175–183PubMedCrossRefGoogle Scholar
  111. Tang, P.C., Ruch, T.C. 1955. Non-neurogenic basis of bladder tonus. Am. J. Physiol. 181: 249–257Google Scholar
  112. Todd, J.K., Mack, A.J. 1969. A study of human bladder detrusor muscle. Br. J. Urol. 41: 448–454Google Scholar
  113. Vanov, S. 1965. Responses of the rat urinary bladder in situ to drugs and nerve stimulation Br. J. Pharmacol. 24: 591–600Google Scholar
  114. Von Euler, U.S., Gaddum, J.H. 1931. An unidentified depressor substance in certain tissue extracts. J. Physiol. ( Lond ) 72: 74–87Google Scholar
  115. Warwick, R. Williams, P.L. 1973. Neurology plexuses of the autonomic nervous system. In: Gray’s anatomy. Warwick, R., Williams, P.L., eds. Edinburgh, Longman, pp 1079–1081Google Scholar
  116. Wein, A.J., Gregory, J.G., Cromie, W.J., Corriere, J.N.J., Jacobwitz, D. 1974. Sympathetic innervation and chemical sympathectomy of canine bladder. Urology 9: 27–31CrossRefGoogle Scholar
  117. Wein, A.J., Levin, R.M. 1979. Comparison of adrenergic receptor density in urinary bladder in man, dog and rabbit. Surg. Forum 30: 576–578PubMedGoogle Scholar
  118. Winter, D.L. 1971. Receptor characteristics and conduction velocities in bladder afferents. J. Psychiatr. Res. 8: 225–235PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1994

Authors and Affiliations

  • C. R. Chapple

There are no affiliations available

Personalised recommendations