AISB91 pp 149-159 | Cite as

Task Centered Representation for Expert Systems at the Knowledge Level

  • Christine Pierret-Golbreich
  • Isabelle Delouis


This work comes within the framework of current research on the development of functional architectures for second generation expert systems. The aim is to propose a model that allows the elicitation of a problem solving process at a “more appropriate” level of abstraction. The TASK model being developed has been specified in such a way as to offer the possibility of expressing the specificity of the semantics and the control structures implicit in certain clearly recognized reasoning modules whatever the level of abstraction is (generic tasks relating to a high-level cognitive activity or more specific tasks involved in solving a particular problem). This model is based on the key concept of “task”, a data structure which makes it possible to clearly reflect all the conceptual operations involved in the type of reasoning to be modelled. TASK denotes at one and the same time a representation model and the general architecture supporting task based system.


Generic Task Task System Inference Mechanism Fixed Task Abstract Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennet, J.S. and Engelmore, R.S. Experience using NEOMYCIN in Rule Based Expert Systems, Buchanan and Shortliffe, Reading: Addison Wesley Pub. Comp. 1984Google Scholar
  2. Chandrasekaran, B. (1987) Towards a Functional Architecture for Intelligence Based on Generic Information Processing Tasks., IJCAI Vol 2, 1987.Google Scholar
  3. Chandrasekaran, B. (1988) Generic tasks as building blocks for knowledge-based systems: the diagnosis and routine design examples, The Knowledge Engineering Review, September 1988, 3(3):pp183–219.CrossRefGoogle Scholar
  4. Clancey, W.J. (1985) Heuristic Classification Artificial Intelligence, 27, 1985, pp 289–350Google Scholar
  5. David, J.M. et Krivine, J.P. (1989) Designing Knowledge-Based Systems within Functional Architecture: the DIVA experiment, IEEE Conference on AI Applications, Miami, mars 1989.Google Scholar
  6. Dieng, R. and Trousse, B. (1988) 3DKAT, A dependency-driven dynamic-knowledge acquisition tool, Third Symposium on Knowledge Engineering, Madrid Espagne, 1988.Google Scholar
  7. Fajon M., Corby O.(1988) ERASME: entretien routier par systeme multi-expert, 8 ème journées Internationales “Les systèmes experts et leurs applications”, Avignon, Mai 1988.Google Scholar
  8. Frayman, F. and Mittal, S. (1987) COSSACK: a constraint-based expert system for configuration tasks, Proceedings of the 2nd International Conference on Appl, of Artificial Intelligence in Engineering, Cambridge, M.A., U.S.A., August 1987.Google Scholar
  9. MASAI, (1989) MASAI Version 1.0: L’outil de développement interactif d’interfaces graphiques, ILOG, Mai 1989.Google Scholar
  10. Mittal, S., Dym, C.L. and Morjaria M. (1986) PRIDE: an expert system for the design of paper handling system, IEEE 1986, pp 102–114.Google Scholar
  11. Montalban, M. (1987) Prise en compte de spécifications en Ingéniérie, application aux systèmes experts de conception, Thèse Informatique, Université de Nice, 17 Novembre 1987.Google Scholar
  12. Mostow, J. (1985) Toward Better Models of The Design Process, The AI Magazine, Spring 1985.Google Scholar
  13. Neveu, B. (1987) EXPORT: an expert system in breakwater design, 5th National Conference on Artificial Intelligence, Philadelphia, 1986.Google Scholar
  14. Newell, A. (1982) “The knowledge level”, A.I., 18(1), 87–128.Google Scholar
  15. Pierret, C. (1988) Vers un système à base de connaissances centrées objets pour la modélisation de systèmes dynamique en biologie, Thèse de doctorat à l’Université de Compiègne, nov 1988.Google Scholar
  16. Pierret, C., Delouis, I. and Scapin, D. (1989) Un outil d’acquisition et de représentation des tâches orienté-objet, Rapport de Recherche INRIA 1063.Google Scholar
  17. Pierret, C., Delouis, I.(1990) TASK: Task Architecture for Structuring Knowledge, General Conference Second Generation Expert Systems, Tenth International Workshop Expert Systems & their Applications, Avignon, May 28–June 1st, 1990Google Scholar
  18. Punch F., Chandrasekaran B.(1990) An investigation of the roles of problem-solving methods in diagnosis, General Conference Second Generation Expert Systems, Tenth International Workshop Expert Systems & their Applications, Avignon, May 28–June 1st, 1990Google Scholar
  19. Rechenmann, F (1988) SHIRKA: Système de gestion de bases de connaissances centrées-objet, Manuel d’utilisation 1988.Google Scholar
  20. Scapin, D. and Pierret, C. (1988) Une Méthode Analytique de Description des tâches, Colloque sur l’ingénierie des interfaces homme-machine, Mai 1989, Cargèse.Google Scholar
  21. Smeci, (1988) SMECI Version 1.4, Manuel de Référence, ILOG, Gentilly.Google Scholar
  22. Wielinga, B., Bredeweg, B., Breuker, J. (1988) Knowledge acquisition for expert systems, in R. Nossum (ed) Proceedings of the ACAI’87, Berlin, SpringerGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1991

Authors and Affiliations

  • Christine Pierret-Golbreich
    • 1
  • Isabelle Delouis
    • 1
  1. 1.Laboratoire de Recherche en Informatique Equipe Intelligence Artificielle et Systèmes d’InférencesUniversité Paris SudOrsay CedexFrance

Personalised recommendations