Skip to main content

Knee Biomechanics and Materials

  • Chapter
Total Knee Replacement

Abstract

“Biomechanics is the study of forces and the effects that these forces have on the human body” (LeVeau 1984). From the orthopaedist’s perspective, there is a normal equilibrium between mechanical stress on the musculoskeletal system and its response to that stress. Any disturbance to this balance will eventually result in remodeling, degeneration, or failure of a structure. Within the realm of total knee replacement, it is necessary to understand fully the biomechanics of the normal joint since the objective of total knee arthroplasty is to re-establish normal joint function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andriacchi T (1988) Biomechanics and gait analysis in total knee replacement. Orthop Rev 17: 470–473

    PubMed  CAS  Google Scholar 

  • Andriacchi T, Galante J, Fermier R (1982) The influence of total knee replacement design on walking and stair climbing. J Bone Joint Surg (Am) 65: 1328–1335

    Google Scholar 

  • Balazs E, Gibbs D (1970) Chemistry and molecular biology of the intercellular matrix. Academic Press, New York, pp 1241–1253

    Google Scholar 

  • Barbos M, Benvenuti A (1983) Metallic debris arising from prosthetic abrasion: An investigation of biodégradation of the materials and physiology of bone. Ital J Orthop Traumatol 9: 377–386

    Google Scholar 

  • Bartel D, Burstein A, Santavicca E, Insall J (1982) Performance of the tibial component in total knee replacement. J Bone Joint Surg (Am) 64: 1026–1033

    CAS  Google Scholar 

  • Beaupre G, Vasu R, Carter C, Schurman D (1986) Epiphy- seal-based designs for tibial plateau components. II. Stress analysis in the sagittal plane. J Biomech 19: 663–673

    Google Scholar 

  • Bennett G, Waine H, Bauer W (1942) Changes in the knee joint at various ages. The Commonwealth Fund, New York

    Google Scholar 

  • Blaha J, Freeman M, Revell P, Todd R (1982) The fixation of a proximal tibial polyethylene prosthesis without cement. J Bone Joint Surg (Br) 64: 326–335

    CAS  Google Scholar 

  • Bobyn J, Cameron H, Abdulla D, Pilliar R, Weatherly C (1982) Biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin Orthop 166: 301–312

    PubMed  Google Scholar 

  • Bourne R, Finlay J, Cohn N (1981) Principal strain in the human tibia before and after total knee arthroplasty. Trans Orthop Res Soc 6: 160

    Google Scholar 

  • Brostrom L, Gillquist J, Liljedahl S, Lindvall N (1968) Treatment of old ruptures of the anterior cruciate ligament. Lakartidmingen 65: 4479–4487

    CAS  Google Scholar 

  • Bullough P, Goodfellow J (1968) The significance of the fine structure of the articular cartilage. J Bone Joint Surg (Br) 50: 852–857

    CAS  Google Scholar 

  • Bullough P, Munuera L, Murphy J, Weinstein A (1970) The strength of the menisci as it relates to fine structure. J. Bone Joint Surg (Br) 52: 564–570

    CAS  Google Scholar 

  • Calderale P, Scelfo G (1987) A mathematical model of thelocomotor apparatus. Eng Med 16: 147–161

    Article  PubMed  CAS  Google Scholar 

  • Cheal E, Hayes W, Lee C, Snyder B, Miller J (1985) Stress analysis of a condylar knee tibial component: Influence of metaphyseal shell properties and cement injection depth. J Orthop Res 3: 424–434

    Google Scholar 

  • Collopy M, Murray M, Gardner G, DiUlio R, Gore D (1977) Kinesiology measurements of functional performance before and after Geometric total knee replacement: One year follow-up of twenty cases. Clin Orthop 126: 196–202

    Google Scholar 

  • Connelly G, Rimnac C, Wright T, Hertzberg R, Manson J (1984) Fatigue crack propagation behavior of ultra high molecular weight polyethylene. J Orthop Res 2: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Fleming B, Stein A, Howe J, Pope M (1987) An in vitro comparative study of total knee arthroplasties. Trans Rehabil Eng Soc N Am 10: 256

    Google Scholar 

  • Fung Y (1981) Bone and cartilage. In: Biomechanics: Mechanical properties of living tissues. Springer-Verlag, New York, pp 383–413

    Google Scholar 

  • Garg A, Walker P (1986) The effect of the interface on the bone stresses beneath tibial components. J Biomech 19: 957–967

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow J, Bullough P (1967) The pattern of aging of the articular cartilage of the elbow joint. J Bone Joint Surg (Br) 49: 175–181

    CAS  Google Scholar 

  • Goodfellow J, Oconnor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg (Br) 60: 358–369

    Google Scholar 

  • Greenwald A, Black J, Matejczyk M (1981) Total knee replacement. In: The AOSS instructional course lectures, 30, pp 301–341

    Google Scholar 

  • Harrington I (1976) A bioengineering analysis of force actions at the knee in normal and pathological gait. J Biomed Eng 98: 167–172

    Google Scholar 

  • Harrison M, Scajowicz F, Trueta J (1953) Osteoarthritis of the hip: A study of the nature and evolution of the disease. J Bone Joint Surg (Br) 35: 598–626

    Google Scholar 

  • Hood R, Wright T, Burstein A (1983) Retrieval analysis total knee prostheses: A method and its application to 48 total condylar prostheses. J Biomed Mater Res 17: 829–842

    Article  PubMed  CAS  Google Scholar 

  • Huson A (1974) Biomechanische Probleme des Kniegelenks.Orthopaede 3: 119–126

    Google Scholar 

  • Johnson J, Krug W, Nahon D, Miller J, Ahmed A (1983) An evaluation of the load bearing capability of the cancellous proximal tibia with special interest to the design of knee implants. Trans Orthop Res Soc 8: 403

    Google Scholar 

  • Kapandji I (1970) The knee. In: The physiology of the joints, Vol. 2, Churchill Livingstone, New York, pp 72–135

    Google Scholar 

  • Kettlekamp D, Chao E (1972) A method for quantitative analysis of medial and lateral compression forces at the knee during standing. Clin Orthop 83: 202–213

    Article  Google Scholar 

  • Kettlekamp D, Jacob A (1972) Tibiofemoral contact area - determination and implications. J Bone Joint Surg (Am) 54: 349–356

    Google Scholar 

  • King R (1966) On the viscosity of synovial fluids. Rheol Acta 1: 41–44

    Article  Google Scholar 

  • Landy M, Walker P (1985) Wear in condylar replacement knees: A ten year follow-up. Trans Orthop Res Soc 10: 96

    Google Scholar 

  • Laskin R (1988) Tricon-M uncemented total knee arthroplasty. A review of 96 knees followed for longer than 2 years. J Arthroplasty 3 (l): 27–38

    Article  PubMed  CAS  Google Scholar 

  • Le Veau B (1984) Biomechanics. A summary of perspectives.Phys Ther 64: 1812

    Google Scholar 

  • Lewis J, Galante J (1985) Workshop on the bone-joint implant interface. J Orthop Res 3: 380–386

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, Jaycox D, Wang O (1977) Stress analysis of some features of knee prostheses by finite elements. Trans Orthop Res Soc 2: 55

    Google Scholar 

  • Liljedahl S, Nordstrand A (1969) Injuries to the ligaments of the knee. Injury 1: 17–24

    Article  Google Scholar 

  • Manley M, Stulberg B, Stern L, Watson J, Stulberg S (1987) Direct observation of micromotion at the implant bone interface with cemented and noncemented tibial components. Trans Orthop Res Soc 12: 436

    Google Scholar 

  • Maquet P (1984a) Mechanics of the knee. In: Biomechanics of the knee, 2nd ed. Springer-Verlag, New York, pp 9–74

    Chapter  Google Scholar 

  • Maquet P (1984b) The pathomechanics of osteoarthritis of the knee. In: Biomechanics of the knee, 2nd ed. Springer- Verlag, New York, pp 75–131

    Chapter  Google Scholar 

  • Mathur P, McDonald J, Ghormley R (1949) A study of the tensile strength of menisci. J Bone Joint Surg (Am) 31: 650–654

    Google Scholar 

  • Matsen FA, Sidles J, Laskin RS, Gabrini M (1988) The effects of joint line position in total knee replacement. Trans of the 54th Annual Meeting of the American Academy of Orthopaedic Surgeons, p 42

    Google Scholar 

  • Mears D (1979) Mechanical behaviors of real materials. In: Materials in Orthopaedic surgery, 1st ed. Williams Wilkins, Baltimore, pp 92–106

    Google Scholar 

  • Mena D, Mansour J, Simon S (1981) Analysis and synthesis of human swing leg motion during gait and its clinical applications. B Biomech 14: 823–832

    Article  CAS  Google Scholar 

  • Menschik A (1974) Mechanik des Kniegelenkes: I. Z Orthop 112: 481–495

    PubMed  CAS  Google Scholar 

  • Miegel R, Walker P, Nelson P . (1986) A compliant interface for total knee arthroplasty. J Orthop Res 4:486– 493

    Google Scholar 

  • Mikosz R (1985) Mathematical model for the study of forces in the human knee joint during locomotion. University of Illinois, Chicago. Thesis

    Google Scholar 

  • Mikosz R, Andriacchi T, Andersson G (1988) Analysis of factors influencing the prediction of muscle forces at the knee. J Orthop Res 6: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Miller J (1989) Fixation in total knee arthroplasty. In: Insall J (ed) Surgery of the knee. Churchill Livingstone, New York, pp 717–728

    Google Scholar 

  • Minns R (1981) Forces at the knee joint: anatomical considerations. J Biomech 14: 633–643

    Article  PubMed  CAS  Google Scholar 

  • Mirra J, Amstutz H, Matos M, Gold R (1976) The pathology of the joint tissues and its clinical relevance in prosthesis failure. Clin Orthop 117: 221–240

    PubMed  Google Scholar 

  • Mirra J, Marder R, Amstutz H (1982) The pathology of failed total joint arthroplasty. Clin Orthop 170: 175–183

    PubMed  Google Scholar 

  • Miura H, Whitesides L, Easley J, Amador D (1988) Effects of screws and sleeve on initial fixation in uncemented total knee tibial component. Pamphlet from the DePaul Biomechanics Laboratories, 12255 DePaul Drive, Bridgeton, MO, 63044

    Google Scholar 

  • Morrison J (1968) Bioengineering analysis of force actions transmitted by the knee joint. J Biomed Eng 2: 164–170

    Google Scholar 

  • Morrison J (1970a) The function of the knee joint in various activities. B Biomed Eng 4: 573–580

    Google Scholar 

  • Morrison J (1970b) The mechanics of the knee joint during normal walking. J Biomech 3: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Muller W (1938) Kinematics. In: The knee: form, function, and ligament reconstruction. Springer-Verlag, New York, pp 8–28

    Google Scholar 

  • Nisell R (1985) On the biomechanics of the knee. Acta Orthop Scand 216: 11

    Google Scholar 

  • Palmer I (1938) On the injuries to the ligaments of the knee joint. Acta Chir Scand 81 [Suppl] 53

    Google Scholar 

  • Rittman N, Kettlekamp D, Pryor P, Schwartzkopf G, Hill- berry B (19181) Analysis of patterns of knee motion walking for four types of total knee implants. Clin Orthop 155: 111–117

    Google Scholar 

  • Rose R, Crugnola A, Reis M . (1979) On the origins of high in vivo wear rates in polyethylene components in total joint prostheses. Clin Orthop 145: 277–286

    PubMed  Google Scholar 

  • Rostoker W, Chao E, Galante J (1978) The appearance of wear on polyethylene - A comparison of in vivo and in vitro wear surfaces. J Biomed Mater Res 12: 317–335

    Article  PubMed  CAS  Google Scholar 

  • Ryd L, Lindstrand A, Rosenquist R, Selrik G (1986) Tibial component fixation in knee arthroplasty. Clin Orthop 213: 141–149

    PubMed  Google Scholar 

  • Seedhom B, Dowson D, Wright V, Longton E (1972) A technique for the study of geometry and contact in normal and artificial knee joints. Wear 20: 189–199

    Article  Google Scholar 

  • Seireg A, Arvikar R (1975) The prediction of Musculoskeletal load sharing and joint forces in the lower extremities during walking. J Biomech 8: 89–102

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker S, Markolf K, Finerman G (1982) In vitro stability of the implanted total condylar prosthesis. J Bone Joint Surg (Am) 64: 1201–1213

    CAS  Google Scholar 

  • Simon S, Paul I, Mansour J, Munro M, Abernethy P, Radin E (1981) Peak dynamic force in human gait. J Biomech 14: 817–822

    Article  PubMed  CAS  Google Scholar 

  • Simon S, Trieshmann H, Burdett R, Ewald F, Sledge C (1983) Quantitative gait analysis after total knee arthroplasty for monarticular degenerative arthritis. J Bone Joint Surg (Am) 65: 605–613

    CAS  Google Scholar 

  • Stein A, Fleming B, Howe J, Pope M (1987) Total knee arthroplasty kinematics: An in vivo evaluation of four different designs. J Arthroplasty [Suppl] S31–S36

    Google Scholar 

  • Thatcher J, Zhou X, Walker P (1987) Inherent laxity in total knee prostheses. J Arthroplasty 2 (3): 199–206

    Article  PubMed  CAS  Google Scholar 

  • Townsend P, Diamond R, Wyatt P (1979) Aspects of tibial plateau design: Condyle and stem deflections by micromotion and photo-elastic analysis. Trans Orthop Res Soc 4: 251

    Google Scholar 

  • Treharne R, Young R, Young S (1981) Wear of artificial joint materials III: Simulation of the knee joint using a computer controlled system. Eng Med 10: 137–142

    Google Scholar 

  • Vainionpaa S, Laike E, Kirves P, Tiusanen P (1981) Tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg (Am) 63: 938–946

    CAS  Google Scholar 

  • Vasu R, Carter D, Schurman D, Beaupre G (1986) Epiphy- seal-based designs for tibial plateau components. I. Stress analysis in the frontal plane. J Biomech 19: 647–662

    Google Scholar 

  • Walker P (1977a) Friction and wear in artificial joints. In: Human joints and their artificial replacements. Thomas, Illinois, pp 368–422

    Google Scholar 

  • Walker P (1977b) Lubrication and degeneration. In: Human joints and their artificial replacements. Thomas, Illinois, pp 211–252

    Google Scholar 

  • Walker P (1989) Requirements for successful total knee replacements. Design considerations. Orthop Clin N Am 20: 15–29

    CAS  Google Scholar 

  • Walker P, Hajek J (1972) The load-bearing areas in the knee joint. J Biomech 5: 581–589

    Article  PubMed  CAS  Google Scholar 

  • Walker P, Hsieh H (1977) Conformity in condylar replacement knee prostheses. J Bone Joint Surg (Br) 59: 222–228

    CAS  Google Scholar 

  • Walker P, Seitelman D (1978) The interdependence of rotational stiffness and contact stress in condylar replacement knee prostheses. Trans Orthop Res Soc 3: 152

    Google Scholar 

  • Walker P, Zhou X (1987) The dilemma of surface design in total knee replacement. Trans Orthop Res Soc 12: 291

    Google Scholar 

  • Walker P, Reilly D, Ben-Dov M (1980) Load transfer in the upper femur before and after tibial component attachment. Trans Orthop Res Soc 5: 16

    Google Scholar 

  • Walker P, Greene D, Reilly D . (1981) Fixation of tibial components of prostheses. J Bone Joint Surg (Am) 63: 258–267

    CAS  Google Scholar 

  • Whittle M (1985) Dynamic assessment of knee joint function. Eng Med 15 (2): 71–75

    Article  Google Scholar 

  • Wismans J, Veldpaus F, Janssen J, Huson A, Struben P (1980) A three dimensional mathematical model of the knee joint. J Biomech 13: 677–685

    Article  PubMed  CAS  Google Scholar 

  • Wright T, Bartel D (1986) The problem of surface damage in polyethylene total knee components. Clin Orthop 205: 67–74

    PubMed  Google Scholar 

  • Wright T, Fukubayashi T, Burstein A (1981) The effect of carbon fiber reinforcement on contact area, contact pressure, and time dependent deformation in polyethylene tibial components. J Biomed Mater Res 15: 719–730

    Article  PubMed  CAS  Google Scholar 

  • Wright T, Rimnac C, Faris P, Bansel M (1988) Analysis of surface damage in retrieved carbon fiber reinforced and plain polyethylene tibial components from posterior stabilized tibial components. J Bone Joint Surg (Am) 0: 1312–1319

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pope, M.H., Fleming, B.C. (1991). Knee Biomechanics and Materials. In: Laskin, R.S. (eds) Total Knee Replacement. Springer, London. https://doi.org/10.1007/978-1-4471-1825-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1825-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1827-5

  • Online ISBN: 978-1-4471-1825-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics