Skip to main content
  • 88 Accesses

Abstract

The physiology of colonic function is less well understood than in other regions of the gastrointestinal tract. This is largely due to the relative inaccessibility of the colon in vivo, and the lack of a suitable animal model of the human colon. Colonic movements exhibit special features to serve a specific function. Firstly, the movements are organized to produce very slow flow which facilitates the extraction of water and electrolytes from the faecal mass. Secondly, the slow nature of colonic movements facilitates the growth of colonic microflora. In contrast, the contractions of the distal colon are designed to assist defaecation. It is now becoming increasingly clear that, although anatomically the colon is a single organ, in physiological terms the colon consists of three separate regions (right colon, left colon and the anorectum) which require precise coordination to produce normal function. Antiperistaltic contractions are predominant in the proximal colon, whereas slowly moving ring contractions directed aborally are more common in the distal colon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayliss WM, Starling EH (1900) The movements and inner- vation of the large intestine. J Physiol (Lond) 26: 107–118

    CAS  Google Scholar 

  • Bennett RC, Duthie HL (1964) The functional importance of the internal sphincter. Br J Surg 51: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Grimaud JC (1984) Neuronally mediated interactions between urinary bladder and internal anal sphincter motility in the cat. J Physiol (Lond) 346: 461–469

    CAS  Google Scholar 

  • Caprilli R, Onori L (1972) Origin, transmission and ionic dependence of colonic electrical slow wave. Scand J Gastroenterol 7: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Christensen J (1971) The controls of gastrointestinal move- ments: some old and new views. N Engl J Med 285: 85–98

    Article  PubMed  CAS  Google Scholar 

  • Christensen J (1987) Motility of the colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 665–693

    Google Scholar 

  • Christensen J, Anuras S, Hauser RL (1974) Migrating spike bursts and electrical slow waves in the cat colon: effect of sectioning. Gastroenterology 66: 240–247

    PubMed  CAS  Google Scholar 

  • Duthie HL, Bennett RC (1963) The relation of sensation in the anal canal to the functional anal sphincter. A possible factor in anal continence. Gut 4: 179–182

    Article  PubMed  CAS  Google Scholar 

  • Finlay IG, Carter K, McCleod I (1986) A comparison of intrarectal function of gas and mass on anorectal angle and anal canal pressure. Br J Surg 73: 10–25

    Article  Google Scholar 

  • Furness JB (1970) The origin and distribution of adrenergic nerve fibers in the guinea-pig colon. Histochemie 21: 295–306

    Article  PubMed  CAS  Google Scholar 

  • Garry RC (1933) The responses to stimulation of the caudal end of the large bowel in the cat. J Physiol (Lond) 78: 208–224

    CAS  Google Scholar 

  • Gaston EA (1951) Physiological basis for preservation of fecal continence after resection of rectum. JAMA 146: 1486–1489

    Article  CAS  Google Scholar 

  • Griffith SG, Bumstock G (1983) Serotonergic neurons in human fetal intestines: an immuno-histochemical study. Gastroenterology 85: 929–937

    PubMed  CAS  Google Scholar 

  • Hardcastle JD, Parks AG (1970) A study of anal incontinence and some principles of surgical treatment. Proc R Soc Med 63 (supp): 116–118

    PubMed  Google Scholar 

  • Hertz AF, Newton A (1913) The normal movements of the colon in man. J Physiol (Lond) 47: 57–65

    CAS  Google Scholar 

  • Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11: 91–99

    Article  PubMed  CAS  Google Scholar 

  • Holzknecht G (1909) Die normale Peristaltik des Kolon. Munch Med Wschr 56: 2401–2403

    Google Scholar 

  • Hukuhara T, Miyaka T (1959) The intrinsic reflexes in the colon. Jpn J Physiol 9: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Jule Y (1975) Modification de l’activite electrique du colon proximal de lapin in vivo par stimulation des nerfs vagues et splanchniques. J Physiol (Paris) 70: 5–26

    CAS  Google Scholar 

  • Jule Y (1980) Nerve-mediated descending inhibition in the proximal colon of the rabbit. J Physiol (tond) 309: 487–498

    CAS  Google Scholar 

  • Jule Y, Gonella J (1972) Modifications de l’activite electrique du colon terminal de lapin par stimulation des fibers nerveuses pel viennes et sympathiques. J Physiol (Paris) 64: 599–621

    CAS  Google Scholar 

  • Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Waldron D, Williams NS, Browning C, Hutton MRE, Wingate DL (1990) Prolonged anorectal manometry and external anal sphincter electromyography in ambulant human subjects. Dig Dis Sci 35: 641–648

    Article  PubMed  CAS  Google Scholar 

  • Lubowski DZ, Nicholls RI, Swash M, Jordan MJ (1987) Neural control of internal anal sphincter function. Br J Surg 74: 668–670

    Article  PubMed  CAS  Google Scholar 

  • Meshkinpour H, Nowroozi F, Glick ME (1983) Colonic compliance in patients with spinal cord injury. Arch Phys Med Rehabil 64: 111–112

    PubMed  CAS  Google Scholar 

  • Miller R, Bartolo DCC, Cervero F, Mortensen McC (1988) Anorectal sampling: a comparison of normal and incontinent patients. Br J Surg 75: 14 47

    Google Scholar 

  • Milligan ETC, Morgan CN (1934) Surgical anatomy of the anal canal with special reference to anorectal fistulae. Lancet 11: 1150–1156

    Article  Google Scholar 

  • Narducci F, Bassotti G, Gaburri M, Mordli A (1987) Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Parks A, Porter NH, Hardcastle JD (1966) The syndrome of the descending perineum. Proc R Soc Med 59: 477–482

    PubMed  CAS  Google Scholar 

  • Phillips SF, Edwards DAW (1965) Some aspects of anal continence and defaecation. Gut 6: 396–405

    Article  PubMed  CAS  Google Scholar 

  • Richie JA (1971) Movement of segmented constrictions in the human colon. Gut 12: 350–355

    Article  Google Scholar 

  • Salducci J, Planche D, Nandy B (1982) Physiological role of the internal anal sphincter and the external anal sphincter during micturition. In: Wienbeck M (ed) Motility of the digestive tract. Raven Press, New York, pp 513–520

    Google Scholar 

  • Scharli AF, Keisewetter WB (1970) Defaecation and continence: some new concepts. Dis Colon Rectum 13: 81–107

    Article  PubMed  CAS  Google Scholar 

  • Schuster MM, Hendrix TR, Mendeloff AI (1963) The internal anal sphincter response: manometric studies on its normal physiology, neural pathways and alteration in bowel disorders. J Clin Invest 42: 196–207

    Article  PubMed  CAS  Google Scholar 

  • Snape WJ Jr, Carlson GM, Cohen S (1976) Colonic myoelectric activity in the irritable bowel syndrome. Gastroenterology 70: 326–330

    PubMed  Google Scholar 

  • Sullivan MA, Cohen S, Snap WJ Jr (1978) Colonic myoelectric activity in irritable-bowel syndrome. Effect of eating and anticholinergics. N Engl J Med 298: 878–883

    Article  PubMed  CAS  Google Scholar 

  • Wankling WJ, Brown BH, Collins CD, Duthie HL (1968) Basal electrical activity in the anal canal in man. Gut 9: 457–460

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kumar, D. (1991). Physiological Mechanisms. In: Kumar, D., Waldron, D.J., Williams, N.S. (eds) Clinical Measurement in Coloproctology. Springer, London. https://doi.org/10.1007/978-1-4471-1822-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1822-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1824-4

  • Online ISBN: 978-1-4471-1822-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics