Advertisement

Thirst pp 110-130 | Cite as

Hormonal Inputs to Thirst

  • E. Szczepanska-Sadowska
Part of the ILSI Human Nutrition Reviews book series (ILSI HUMAN)

Abstract

Thirst is one of the most important homeostatic mechanisms within the complex system of the body fluid control. In healthy subjects operation of the thirst system and of the other systems brought into action by changes in body fluid tonicity or volume is, with some exceptions such as voluntary dehydration, precisely adjusted to smooth and effective restoration of normal conditions. This phenomenon strongly implies existence of a highly integrated co-ordination of thirst with the other effectors. During recent years extensive research has been focused on the role of hormonal inputs. In particular, the possibility of direct effects of hormones on water intake has been debated.

Keywords

Water Intake Atrial Natriuretic Peptide Atrial Natriuretic Factor Lateral Septum Subfornical Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham SF, Baker RM, Blaine EH, Denton DA, McKinley MJ (1975) Water drinking induced in sheep by angiotensin-a physiological or pharmacological effect? J Comp Physiol Psychol 88:503–518PubMedCrossRefGoogle Scholar
  2. Andersson B (1978) Regulation of water intake. Physiol Rev 58:582–603PubMedGoogle Scholar
  3. Andersson B, Westbye O (1970) Synergistic action of sodium and angiotensin on brain mechanisms controlling fluid balance. Life Sci 9:601–608CrossRefGoogle Scholar
  4. Andersson B, Leksell G, Lishajko F (1975) Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Res 99:261–275PubMedCrossRefGoogle Scholar
  5. Anke J, Van Eekelen M, Phillips MI (1988) Plasma angiotensin II levels at moment of drinking during angiotensin II intravenous infusion. Am J Physiol 255:R500–R506PubMedGoogle Scholar
  6. Antunes-Rodrigues J, McCann SM, Rogers LC, Samson WK (1985) Atrial natriuretic factor inhibits dehydration and angiotensin II-induced water intake in the conscious unrestrained rat. Proc Natl Acad Sci USA 82:8720–8723PubMedCrossRefGoogle Scholar
  7. Barker JP, Adolph EF, Keller AD (1953) Thirst tests in dogs and modifications of thirst with experimental lesions of the neurohypophysis. Am J Physiol 173:233–245PubMedGoogle Scholar
  8. Baylis PH (1987) Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol 253:R671–R678PubMedGoogle Scholar
  9. Blaine EH, Covelli MD, Denton DA, Nelson JF, Skulkes AA (1975) The role of ACTH and adrenal glucocorticoids in the salt appetite of wild rabbits (Oryctolagus cuniculus (L)). Endocrinology 97:793–801PubMedCrossRefGoogle Scholar
  10. Blumenfeld JD, Hebert SC, Heilig CW, Baischi JA, Stromski ME, Gullans SR (1989) Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256:F916–922Google Scholar
  11. Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle (AV3V) region in fluid and electrolyte balance, atrial pressure regulation, and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven Press, New York, pp 249–292Google Scholar
  12. Brown DR, Holtzman SG (1981) Narcotic antagonists attenuate drinking induced by water deprivation in a primate. Life Sci 28:1287–1294PubMedCrossRefGoogle Scholar
  13. Buijs RM (1987) Vasopressin localization and putative functions in the brain. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, London, pp 91–115.Google Scholar
  14. Burque Ch W (1989) Ionic basis for the intrinsic activation of rat supraoptic neurones by hyperosmotic stimuli. J Physiol (Lond) 417:263–277Google Scholar
  15. Cameron V, Espiner EA, Nicholls MG, Donald RA, MacFarlane MR (1985) Stress hormones in blood and cerebrospinal fluid of conscious sheep: effect of hemorrhage. Endocrinology 116:1460–1465PubMedCrossRefGoogle Scholar
  16. Castren E, Saavedra JM (1989) Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized and vasopressin deficient rats. Proc Natl Acad Sci USA 86:725–729PubMedCrossRefGoogle Scholar
  17. Chaudhry MA, Dyball REJ, Honda K, Wright NC (1989) The role of interconnection between supraoptic nucleus and anterior third ventricular region in osmoregulation in the rat. J Physiol (Lond) 410:123–135Google Scholar
  18. Cooper S (1984) Benzodiazepine and endorphinergic mechanism in relation to salt and water intake. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, London, (Series A, Life Sciences, vol 105) pp 239–244Google Scholar
  19. Cowley AW, Switzer SJ, Skelton MM (1981) Vasopressin, fluid and electrolyte response to chronic angiotensin II infusion. Am J Physiol 240:R130–R138PubMedGoogle Scholar
  20. Czech DA, Stein EA, Blake MJ (1983) Naloxone-induced hypodipsia: a CNS mapping study. Life Sci 33:797–803PubMedCrossRefGoogle Scholar
  21. de Caro G, Perfumi M, Massi M (1988) Tachykinins and body fluid regulation. In: Epstein AN, Morrison AR (eds) Progress in psychobiology and physiological psychology, vol 13. Academic Press, San Diego, pp 31–36Google Scholar
  22. Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381:314–321PubMedCrossRefGoogle Scholar
  23. Denton DA, Nelson JF (1978) The control of salt appetite in wild rabbits during lactation. Endocrinology 103:1880–1887PubMedCrossRefGoogle Scholar
  24. De Pasquale M, Patlak CS, Cserr HF (1989) Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol 256:F1059–F1066Google Scholar
  25. De Rubertis FR, Michelis MF, Beck N, Field, Davis BB (1971) “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J Clin Invest 50:97–111CrossRefGoogle Scholar
  26. Dorsa DM, Brot MD, Shewey LM, Meyers KM, Szot P, Miller MA, (1988) Interaction of vasopressin antagonist with vasopressin receptors in the septum of the rat brain. Synapse 2:205–211PubMedCrossRefGoogle Scholar
  27. Dunger DB, Seckl JR, Lightman SL (1987) Increased renal sensitivity to vasopressin in two patients with essential hypernatremia. J Clin Endocrinol Metab 64:185–189PubMedCrossRefGoogle Scholar
  28. Durr JA, Stamoutsos B, Lindheimer MD (1981) Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation. J Clin Invest 68:337–346PubMedCrossRefGoogle Scholar
  29. Epstein AN (1978) Consensus, controversies and curiosities. Fed Proc 37:2711–2716PubMedGoogle Scholar
  30. Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–474Google Scholar
  31. Epstein Y, Castel M, Glick SM, Sivan N, Ravid R (1983) Changes in hypothalamic and extra-hypothalamic vasopressin content of water-deprived rats. Cell Tissue Res 233:99–111PubMedCrossRefGoogle Scholar
  32. Eriksson S, Simon-Oppermann Ch, Simon E, Gray DA (1987) Interaction of changes in the third ventricular CSF tonicity, central and systemic AVP concentrations and water intake. Acta Physiol Scand 130:575–583PubMedCrossRefGoogle Scholar
  33. Feldstein J, Sumners C, Raizada M (1986) Sodium increases angiotensin II receptors in neural cultures from brains of normotensive and hypertensive rats. Brain Res 370:265–272PubMedCrossRefGoogle Scholar
  34. Fitzsimons JT (1969) The role of a renal thirst factor in drinking induced by extracellular stimuli. J Physiol (Lond) 201:349–368Google Scholar
  35. Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Monographs of the physiological society no 35, Cambridge University Press, Cambridge, pp 128–265Google Scholar
  36. Fitzsimons JT, Kucharczyk J (1978) Drinking and hemodynamic changes induced in the dog by intracranial injection of components of the renin-angiotensin system. J Physiol (Lond) 276:419–434Google Scholar
  37. Fitzsimons JT, Moore-Gillon MJ (1980) Drinking and antidiuresis in response to reductions in venous return in the dog: neural and endocrine mechanisms. J Physiol (Lond) 308:403–416Google Scholar
  38. Fitzsimons JT, Simons BJ (1969) The effect on drinking in the rat of intravenous angiotensin, given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203:45–57Google Scholar
  39. Franci G, Kozlowski GP, McCann SM (1989) Water intake in rats subjected to hypothalamic immunoneutralization of angiotensin II, atrial natriuretic peptide, vasopressin or oxytocin. Proc Natl Acad Sci USA 86:2952–2956PubMedCrossRefGoogle Scholar
  40. Ganong WF (1983) The brain renin-angiotensin system. In: Krieger D, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley, New York, pp 805–826Google Scholar
  41. Gansen R, Sumners C (1989) Glucocorticoids potentiate the dipsogenic action of angiotensin II. Brain Res 499:121–130CrossRefGoogle Scholar
  42. Ganten D, Unger Th, Lang RE (1985) The dual role of angiotensin and vasopressin as plasma hormones and neuropeptides in cardiovascular regulation. J Pharmacol (Paris) 16 (Suppl II):51–68Google Scholar
  43. Gardiner SM, Bennett T (1989) Brain neuropeptides:actions on central cardiovascular control mechanisms. Brain Res Rev 14:79–116PubMedCrossRefGoogle Scholar
  44. Goldman MB, Luchins DJ, Robertson GL (1988) Mechanisms of altered water metabolism in psychotic patients with polydipsia and hypernatremia. N Engl J Med 318:397–403PubMedCrossRefGoogle Scholar
  45. Gutman MB, Ciriello J, Mogenson GJ (1988a) Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am J Physiol 254:R746–754Google Scholar
  46. Gutman MB, Jones DL, Ciriello J (1988b) Effect of paraventricular nucleus lesions on drinking and pressor responses to Ang II. Am J Physiol 255:R882–R887PubMedGoogle Scholar
  47. Gutman MB, Douglas L, Jones DL, Ciriello J (1989) Contribution of nucleus medianus to the drinking and pressor responses to angiotensin II acting at subfornical organ. Brain Res 485:49–56CrossRefGoogle Scholar
  48. Harding JW, Jensen LL, Quirk WS, Dewey AL, Wright JW (1989) Brain angiotensin: critical role in the ongoing regulation of body fluid homeostasis and cardiovascular function. Peptides 10:261–264PubMedCrossRefGoogle Scholar
  49. Hoffman WE, Ganten U, Phillips MI, Schmid PG, Schelling P, Ganten D (1978) Inhibition of drinking in water deprived rats by combined central angiotensin II and cholinergic receptor blockade. Am J Physiol 234:F41–F47PubMedGoogle Scholar
  50. Hoffman DL, Krupp L, Schrag D, Nilaver G, Valiquette G, Kilcoyne MM, Zimmerman EA (1982) Angiotensin immunoreactivity in vasopressin cells in rat hypothalamus and its relative deficiency in homozygous Brattleboro rats. Ann NY Acad Sci 394:135–141PubMedCrossRefGoogle Scholar
  51. Huwyler T, Felix D (1980) Angiotensin II sensitive neurons in septal areas of the rat. Brain Res 195:187–195PubMedCrossRefGoogle Scholar
  52. Ihamandas JH, Lind RW, Renauld LP (1989) Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamus supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res 487:52–61CrossRefGoogle Scholar
  53. Inenaga K, Yamashita H (1986) Excitation of neurones in the rat paraventricular nucleus in vitro by vasopressin and oxytocin. J Physiol (Lond) 370:165–180Google Scholar
  54. Johnson AK, Cunningham JT (1987) Brain mechanisms and drinking: the role of lamina terminalis-associated systems in extracellular thirst. Kidney Int 32:S35–S42CrossRefGoogle Scholar
  55. Jojart J, Joo F, Miklos L, Laszlo FA (1984) Immunoelectro-histochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat. Neurosci Lett 51:259–264PubMedCrossRefGoogle Scholar
  56. Kauffman S, Monckton EA (1988) Effect of peripherally administered atriopeptin III on water intake in rats. J Physiol (Lond) 396:379–387Google Scholar
  57. Kiss Z, van Eekelen JAM, Reul JMHM, Westphal HM, De Kloet ER (1988) Glucocorticoid receptor in magnocellular neurosecretory cells. Endocrinology 122:444–449PubMedCrossRefGoogle Scholar
  58. Konecka AM, Sadowski B, Jaszczak J, Panocka I, Sroczynski J (1984) Suppression of food and water intake after intracerebroventricular infusion of morphine and naloxone in rabbits. Arch Int Physiol Biochim 92:219–226PubMedCrossRefGoogle Scholar
  59. Kozlowski S, Szczepanska-Sadowska E (1975) Mechanisms of hypovolemic thirst and interactions between hypovolemia, hyperosmolality and the antidiuretic system. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer-Verlag, Berlin, Heidelberg, New York, pp 25–35Google Scholar
  60. Kozlowski S, Drzewiecki K, Zurawski W (1972) Relationship between osmotic reactivity of the thirst mechanism and the angiotensin and aldosterone level in the blood of dogs. Acta Physiol Pol 23:417–425PubMedGoogle Scholar
  61. Kozlowski S, Szczepanska-Sadowska E, Sobocinska J, Bak M, Czyzyk A (1980) Stimulation of thirst and ADH release after intracranial injection of insulin in the dog. Verh Dtsch Ges Inn Med 86:1423–1426Google Scholar
  62. Kretzschmar R, Landgraf R, Gjedde A, Ermisch A (1986) Vasopressin binds to microvessels from rat hippocampus. Brain Res 380:325–330PubMedCrossRefGoogle Scholar
  63. Landgraf R, Neumann J, Schwarzberg H (1988) Central and peripheral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation. Brain Res 457:219–225PubMedCrossRefGoogle Scholar
  64. Lappe RW, Dinish JL, Bex F et al. (1986) Effects of atrial natriuretic factor on drinking responses to central angiotensin II. Pharmacol Biochem Behav 24:1573–1576PubMedCrossRefGoogle Scholar
  65. Le Goascogne C, Robel P, Gouezou M, Sonanes N, Baulieu E, Waterman M (1987) Neuro-steroids:cytochrome P-450scc in rat brain. Science 237:1212–1215PubMedCrossRefGoogle Scholar
  66. Lee MC, Thrasher TN, Ramsay DJ (1981) Is angiotensin essential in drinking induced by water deprivation and cavai ligation? Am J Physiol 240:R75–R80PubMedGoogle Scholar
  67. Lind RW, Swanson LN, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40:2–24PubMedCrossRefGoogle Scholar
  68. Luttge WG, Emadian SM (1988) Further chemical differentiation of Type I and Type II adrenocorticosteroid receptors in mouse brain cytosol: evidence for a new class of glucocorticoid receptors. Brain Res 453:41–50PubMedCrossRefGoogle Scholar
  69. Malvin RL, Mouw D, Vander AJ (1977) Angiotensin: physiological role in water deprivation-induced thirst of rats. Science 197:171–173PubMedCrossRefGoogle Scholar
  70. Mann JEF, Johnson AK, Ganten D (1980) Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol 238:R372–R377PubMedGoogle Scholar
  71. McAllen RM, Blessing WW (1987) Neurons (presumably Al-cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit. Neurosci Lett 73:247–252PubMedCrossRefGoogle Scholar
  72. Mens WBJ, Van Dam AF, Van Wimersma Greidanus TB (1982) Influence of histamine and pentobarbitone on plasma and CSF vasopressin levels of hypophysectomized rats. Brain Res Bull 8:555–557PubMedCrossRefGoogle Scholar
  73. Miller MA, Urban JH, Dorsa DM (1989) Steroid dependency of vasopressin neurons in the bed nucleus of the stria terminalis by in situ hybridization. Endocrinology 125:2335–2340PubMedCrossRefGoogle Scholar
  74. Möhring J, Kohrs G, Möhring B, Petri M, Homsy E, Haack D (1978) Effects of prolonged vasopressin treatment in Brattleboro rats with diabetes insipidus. Am J Physiol 234:F106–F111PubMedGoogle Scholar
  75. Morley JE, Flood JF (1989) The effect of neuropeptide Y on drinking in mice. Brain Res 494:129–137PubMedCrossRefGoogle Scholar
  76. Morris F, Chapman DB, Sokol HW (1987) Anatomy and function of the classic vasopressin-secreting hypothalamus-neurohypophysial system. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, pp 1–89Google Scholar
  77. Neumann J, Schwarzberg H, Landgraf R (1988) Measurement of septal release of vasopressin and oxytocin by push-pull technique following electrical stimulation of paraventricular nucleus of the rat. Brain Res 462:181–184PubMedCrossRefGoogle Scholar
  78. Nicolaïdis S, Fitzsimons JT (1975) La dependance de la prise d’eau induite par l’angiotensine II envers la fonction vasomotrice cerebrale locale chez le rat. C R Acad Sci 281D: 1417–1420Google Scholar
  79. Nicolaïdis S, Jeulin AC (1984) Converging projections of hydromineral imbalances and hormonal co-action upon neurons surrounding the anterior wall of the third ventricle. J Physiol (Paris) 79:406–415Google Scholar
  80. Okuya S, Inenaga K, Kaneko T, Yamashita H (1987) Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 402:58–67PubMedCrossRefGoogle Scholar
  81. Olsson K, Dahlborn K, Nygren K, Kalberg BE, Anden NE, Eriksson L (1989) Fluid balance and arterial blood pressure during intracarotid infusions of atrial natriuretic peptide (ANP) in water-deprived goats. Acta Physiol Scand 137:249–257PubMedCrossRefGoogle Scholar
  82. Pearlmutter AF, Szkrybalo M, Kim Y, Harik SI (1988) Arginine vasopressin receptors in pig cerebral microvessels, cerebral cortex and hippocampus. Neurosci Lett 87:121–126PubMedCrossRefGoogle Scholar
  83. Plunkett LM, Shigematsu K, Kurihara M, Saavedra JM (1987) Localization of angiotensin II receptors along the anteroventral third ventricle area of the rat brain. Brain Res 405:205–212PubMedCrossRefGoogle Scholar
  84. Raggenbass M, Tribollet E, Dreifuss JJ (1987) Electrophysiological and autoradiographical evidence of VI vasopressin receptors in the lateral septum of the rat brain. Proc Natl Acad Sci USA 84:7778–7782PubMedCrossRefGoogle Scholar
  85. Raggenbass M, Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1988) Direct excitatory action of vasopressin in the lateral septum of the rat brain. Brain Res 459:60–69PubMedCrossRefGoogle Scholar
  86. Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 142:191–194CrossRefGoogle Scholar
  87. Raizada MK, Phillips J, Crews FT, Sumners C (1987) Distinct angiotensin II receptor in primary cultures of glial cells from rat brain. Proc Natl Acad Sci USA 84:4655–4659PubMedCrossRefGoogle Scholar
  88. Ramsay DJ, Reid JA (1975) Some central mechanisms of thirst in the dog. J Physiol (Lond) 253:517–525Google Scholar
  89. Ramsay DJ, Thrasher TN (1984) The defence of plasma osmolality. J Physiol (Paris) 79:416–420Google Scholar
  90. Robertson GL (1987a) Physiology of ADH secretion. Kidney Int 32:(Suppl 21)S-20–S-26CrossRefGoogle Scholar
  91. Robertson GL (1987b) Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Tran Assoc Am Physicians 100:241–249Google Scholar
  92. Robertson GL, Aycinena P, Zerba RL (1982) Neurogenic disorders of osmoregulation. Am J Med 72:339–353PubMedCrossRefGoogle Scholar
  93. Robinson M, Evered MD (1987) Pressor action of intravenous angiotensin II reduces drinking response in rats. Am J Physiol 252:R754–R759PubMedGoogle Scholar
  94. Rolls BJ, Rolls E (1982) Thirst. Problems in the behavioral sciences, Cambridge University Press, CambridgeGoogle Scholar
  95. Rosenberg GA, Kyner WT, Fenstermacher JD, Patlak CS (1986) Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 251:F485–F489PubMedGoogle Scholar
  96. Samson WK (1987) Atrial natriuretic factor and the central nervous system. Endocrinol Metab Clin North Am 16:145–161PubMedGoogle Scholar
  97. Samson WK (1988) Central nervous system actions of atrial natriuretic factor. Brain Res Bull 20:831–837.PubMedCrossRefGoogle Scholar
  98. Sayer J, Hubbard J, Sirett N (1984) Rat Organum vasculosum laminae terminalis in vitro: responses to transmitters. Am J Physiol 247:R374–R379PubMedGoogle Scholar
  99. Shewey LM, Boer J, Szot P, Dorsa M (1989) Regulation of vasopressin receptors and phosphoinositide hydrolysis in the septum of heterozygous and homozygous Brattleboro rats. Neuroendocrinology 50:292–298PubMedCrossRefGoogle Scholar
  100. Shioya M, Tanaka J (1989) Inputs from the nucleus of the solitary tract to subfornical organ neurons projecting to the paraventricular nucleus in the rat. Brain Res 483:192–195PubMedCrossRefGoogle Scholar
  101. Simon-Oppermann Ch, Gray DA, Simon E (1986) Independent osmoregulatory control of central and systemic angiotensin II concentrations in dogs. Am J Physiol 250:R918–R925PubMedGoogle Scholar
  102. Simonnet G, Rodriguez F, Fumoux F, Czernichow P, Vincent JD (1979) Vasopressin release and drinking induced by intracranial injection of angiotensin II in monkey. Am J Physiol 237:R20–R25PubMedGoogle Scholar
  103. Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicitation by angiotensin II. Science 181:1172–1175PubMedCrossRefGoogle Scholar
  104. Sladek CD, Armstrong WE (1987) Effect of neurotransmitters and neuropeptides on vasopressin release. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, pp 275–333Google Scholar
  105. Stanley BG, Leibowitz SF (1984) Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci 35:2635–2642PubMedCrossRefGoogle Scholar
  106. Stricker M (1978) The renin-angiotensin system and thirst: some unanswered questions. Fed Proc 37:2704–2710PubMedGoogle Scholar
  107. Szczepanska-Sadowska E, Kozlowski S, Sobocinska J (1974) Blood antidiuretic hormone level and osmotic reactivity of thirst mechanism in dogs. Am J Physiol 227:766–770PubMedGoogle Scholar
  108. Szczepanska-Sadowska E, Sobocinska J, Sadowski B (1982). Central dipsogenic effect of vasopressin. Am J Physiol 242:R372–R379PubMedGoogle Scholar
  109. Szczepanska-Sadowska E, Simon-Oppermann Ch, Gray DA, Simon E (1984a) Control of central release of vasopressin. J Physiol (Paris) 79:432–439Google Scholar
  110. Szczepanska-Sadowska E, Simon-Oppermann Ch, Gray DA, Simon E (1984b) Plasma and cerebrospinal fluid and osmolality in relation to thirst. Pflügers Arch 400:294–299PubMedCrossRefGoogle Scholar
  111. Szczepanska-Sadowska E, Sobocinska J, Kozlowski S (1987) Thirst impairment elicited by intraventricular administration of vasopressin antagonists. Peptides 8:1003–1009PubMedCrossRefGoogle Scholar
  112. Szczepanska-Sadowska E, Szmydynger-Chodobska J, Chodobski A (1988). Effect of vasopressin on cerebrospinal fluid formation and composition under anisoosmotic conditions. Eur J Clin Invest 18:A27, abstract 121Google Scholar
  113. Tanaka J, Kaba H, Saito H, Seto K (1986a) Lateral hypothalamic area stimulation excites neurons in the region of the subfornical organ with efferent projections to the hypothalamic paraventricular nucleus in the rat. Brain Res 379:200–203PubMedCrossRefGoogle Scholar
  114. Tanaka J, Saito H, Seto K (1986b) Subfornical organ efferents influence the activity of median preoptic neurons projecting to the hypothalamic paraventricular nucleus in the rat. Exp Neurol 93:647–651PubMedCrossRefGoogle Scholar
  115. Tanaka J, Saito H, Kaba H (1987) Subfornical organ and hypothalamic paraventricular nucleus connections with median preoptic nucleus neurons: an electrophysiological study in the rat. Exp Brain Res 68:579–585PubMedGoogle Scholar
  116. Tarjan E, Denton DA, Ong F, Tregear G, Wade J (1987) Effect of icv administration of CRF and POMC peptides on the sodium and water metabolism of wild rabbits. Second World Congress of Neuroscience, Budapest, AbstractGoogle Scholar
  117. Tarjan E, Denton DA, McBurnie MI (1988a) Water and sodium intake of sheep and rabbits during intracerebroventricular infusion of eledoisin. XI Congress of European Neuroscience Association, Zurich 1988, AbstractGoogle Scholar
  118. Tarjan E, Denton DA, McBurnie MI, Weisinger RS (1988b) Water and sodium intake of wild and New Zealand rabbits following angiotensin. Peptides 9:677–679PubMedCrossRefGoogle Scholar
  119. Thomas WG, Sernia C (1985) Regulation of rat brain angiotensin II (AII) receptors by intravenous AII and low dietary Na+. Brain Res 345:54–61PubMedCrossRefGoogle Scholar
  120. Thornton SN, Fitzsimons JT (1989) ICV porcine relaxin stimulates water intake but not sodium intake in male and female rats. Appetite 12:242CrossRefGoogle Scholar
  121. Thrasher TN, Keil LC, Ramsay DJ (1982) Hemodynamic, hormonal and drinking responses to reduced venous return in the dog. Am J Physiol 243:R354–R362PubMedGoogle Scholar
  122. Tribollet E, Barberise C, Jard S, Dubois-Dauphin M, Dreifuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res 442:105–118PubMedCrossRefGoogle Scholar
  123. Vijande M, Marin B, Brime J, Lopez-Sela P, Bernando R, Diaz F, Costales M (1989) Water drinking induced by insulin in humans. Appetite 12:243CrossRefGoogle Scholar
  124. Weindl A (1983) The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (eds) Current topics in neuroendocrinology. Central cardiovascular control. Springer-Verlag, Berlin, Heidelberg, pp 151–186Google Scholar
  125. Weisinger RS, Coghlan JP, Denton DA et al. (1980) ACTH-elicited sodium appetite in sheep. Am J Physiol 239:E45–E50.PubMedGoogle Scholar
  126. Whitaker MD, McArthur RG, Corenblum B, Davidman M, Haslam RH (1979) Idiopathic, sustained, inappropriate secretion of ADH with associated hypertension and thirst. Am J Med 67:511–515PubMedCrossRefGoogle Scholar
  127. Wilson KM, Sumners C, Hathaway S, Fregly M (1986) Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res 382:87–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1991

Authors and Affiliations

  • E. Szczepanska-Sadowska

There are no affiliations available

Personalised recommendations