Skip to main content

Hormonal Inputs to Thirst

  • Conference paper
Thirst

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Thirst is one of the most important homeostatic mechanisms within the complex system of the body fluid control. In healthy subjects operation of the thirst system and of the other systems brought into action by changes in body fluid tonicity or volume is, with some exceptions such as voluntary dehydration, precisely adjusted to smooth and effective restoration of normal conditions. This phenomenon strongly implies existence of a highly integrated co-ordination of thirst with the other effectors. During recent years extensive research has been focused on the role of hormonal inputs. In particular, the possibility of direct effects of hormones on water intake has been debated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham SF, Baker RM, Blaine EH, Denton DA, McKinley MJ (1975) Water drinking induced in sheep by angiotensin-a physiological or pharmacological effect? J Comp Physiol Psychol 88:503–518

    Article  PubMed  CAS  Google Scholar 

  • Andersson B (1978) Regulation of water intake. Physiol Rev 58:582–603

    PubMed  CAS  Google Scholar 

  • Andersson B, Westbye O (1970) Synergistic action of sodium and angiotensin on brain mechanisms controlling fluid balance. Life Sci 9:601–608

    Article  CAS  Google Scholar 

  • Andersson B, Leksell G, Lishajko F (1975) Perturbations in fluid balance induced by medially placed forebrain lesions. Brain Res 99:261–275

    Article  PubMed  CAS  Google Scholar 

  • Anke J, Van Eekelen M, Phillips MI (1988) Plasma angiotensin II levels at moment of drinking during angiotensin II intravenous infusion. Am J Physiol 255:R500–R506

    PubMed  CAS  Google Scholar 

  • Antunes-Rodrigues J, McCann SM, Rogers LC, Samson WK (1985) Atrial natriuretic factor inhibits dehydration and angiotensin II-induced water intake in the conscious unrestrained rat. Proc Natl Acad Sci USA 82:8720–8723

    Article  PubMed  CAS  Google Scholar 

  • Barker JP, Adolph EF, Keller AD (1953) Thirst tests in dogs and modifications of thirst with experimental lesions of the neurohypophysis. Am J Physiol 173:233–245

    PubMed  CAS  Google Scholar 

  • Baylis PH (1987) Osmoregulation and control of vasopressin secretion in healthy humans. Am J Physiol 253:R671–R678

    PubMed  CAS  Google Scholar 

  • Blaine EH, Covelli MD, Denton DA, Nelson JF, Skulkes AA (1975) The role of ACTH and adrenal glucocorticoids in the salt appetite of wild rabbits (Oryctolagus cuniculus (L)). Endocrinology 97:793–801

    Article  PubMed  CAS  Google Scholar 

  • Blumenfeld JD, Hebert SC, Heilig CW, Baischi JA, Stromski ME, Gullans SR (1989) Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol 256:F916–922

    Google Scholar 

  • Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle (AV3V) region in fluid and electrolyte balance, atrial pressure regulation, and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven Press, New York, pp 249–292

    Google Scholar 

  • Brown DR, Holtzman SG (1981) Narcotic antagonists attenuate drinking induced by water deprivation in a primate. Life Sci 28:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM (1987) Vasopressin localization and putative functions in the brain. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, London, pp 91–115.

    Google Scholar 

  • Burque Ch W (1989) Ionic basis for the intrinsic activation of rat supraoptic neurones by hyperosmotic stimuli. J Physiol (Lond) 417:263–277

    Google Scholar 

  • Cameron V, Espiner EA, Nicholls MG, Donald RA, MacFarlane MR (1985) Stress hormones in blood and cerebrospinal fluid of conscious sheep: effect of hemorrhage. Endocrinology 116:1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Castren E, Saavedra JM (1989) Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized and vasopressin deficient rats. Proc Natl Acad Sci USA 86:725–729

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry MA, Dyball REJ, Honda K, Wright NC (1989) The role of interconnection between supraoptic nucleus and anterior third ventricular region in osmoregulation in the rat. J Physiol (Lond) 410:123–135

    CAS  Google Scholar 

  • Cooper S (1984) Benzodiazepine and endorphinergic mechanism in relation to salt and water intake. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, London, (Series A, Life Sciences, vol 105) pp 239–244

    Google Scholar 

  • Cowley AW, Switzer SJ, Skelton MM (1981) Vasopressin, fluid and electrolyte response to chronic angiotensin II infusion. Am J Physiol 240:R130–R138

    PubMed  CAS  Google Scholar 

  • Czech DA, Stein EA, Blake MJ (1983) Naloxone-induced hypodipsia: a CNS mapping study. Life Sci 33:797–803

    Article  PubMed  CAS  Google Scholar 

  • de Caro G, Perfumi M, Massi M (1988) Tachykinins and body fluid regulation. In: Epstein AN, Morrison AR (eds) Progress in psychobiology and physiological psychology, vol 13. Academic Press, San Diego, pp 31–36

    Google Scholar 

  • Demotes-Mainard J, Chauveau J, Rodriguez F, Vincent JD, Poulain DA (1986) Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Res 381:314–321

    Article  PubMed  CAS  Google Scholar 

  • Denton DA, Nelson JF (1978) The control of salt appetite in wild rabbits during lactation. Endocrinology 103:1880–1887

    Article  PubMed  CAS  Google Scholar 

  • De Pasquale M, Patlak CS, Cserr HF (1989) Brain ion and volume regulation during acute hypernatremia in Brattleboro rats. Am J Physiol 256:F1059–F1066

    Google Scholar 

  • De Rubertis FR, Michelis MF, Beck N, Field, Davis BB (1971) “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J Clin Invest 50:97–111

    Article  Google Scholar 

  • Dorsa DM, Brot MD, Shewey LM, Meyers KM, Szot P, Miller MA, (1988) Interaction of vasopressin antagonist with vasopressin receptors in the septum of the rat brain. Synapse 2:205–211

    Article  PubMed  CAS  Google Scholar 

  • Dunger DB, Seckl JR, Lightman SL (1987) Increased renal sensitivity to vasopressin in two patients with essential hypernatremia. J Clin Endocrinol Metab 64:185–189

    Article  PubMed  CAS  Google Scholar 

  • Durr JA, Stamoutsos B, Lindheimer MD (1981) Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation. J Clin Invest 68:337–346

    Article  PubMed  CAS  Google Scholar 

  • Epstein AN (1978) Consensus, controversies and curiosities. Fed Proc 37:2711–2716

    PubMed  CAS  Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ (1970) Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457–474

    CAS  Google Scholar 

  • Epstein Y, Castel M, Glick SM, Sivan N, Ravid R (1983) Changes in hypothalamic and extra-hypothalamic vasopressin content of water-deprived rats. Cell Tissue Res 233:99–111

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S, Simon-Oppermann Ch, Simon E, Gray DA (1987) Interaction of changes in the third ventricular CSF tonicity, central and systemic AVP concentrations and water intake. Acta Physiol Scand 130:575–583

    Article  PubMed  CAS  Google Scholar 

  • Feldstein J, Sumners C, Raizada M (1986) Sodium increases angiotensin II receptors in neural cultures from brains of normotensive and hypertensive rats. Brain Res 370:265–272

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1969) The role of a renal thirst factor in drinking induced by extracellular stimuli. J Physiol (Lond) 201:349–368

    CAS  Google Scholar 

  • Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Monographs of the physiological society no 35, Cambridge University Press, Cambridge, pp 128–265

    Google Scholar 

  • Fitzsimons JT, Kucharczyk J (1978) Drinking and hemodynamic changes induced in the dog by intracranial injection of components of the renin-angiotensin system. J Physiol (Lond) 276:419–434

    CAS  Google Scholar 

  • Fitzsimons JT, Moore-Gillon MJ (1980) Drinking and antidiuresis in response to reductions in venous return in the dog: neural and endocrine mechanisms. J Physiol (Lond) 308:403–416

    CAS  Google Scholar 

  • Fitzsimons JT, Simons BJ (1969) The effect on drinking in the rat of intravenous angiotensin, given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203:45–57

    CAS  Google Scholar 

  • Franci G, Kozlowski GP, McCann SM (1989) Water intake in rats subjected to hypothalamic immunoneutralization of angiotensin II, atrial natriuretic peptide, vasopressin or oxytocin. Proc Natl Acad Sci USA 86:2952–2956

    Article  PubMed  CAS  Google Scholar 

  • Ganong WF (1983) The brain renin-angiotensin system. In: Krieger D, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley, New York, pp 805–826

    Google Scholar 

  • Gansen R, Sumners C (1989) Glucocorticoids potentiate the dipsogenic action of angiotensin II. Brain Res 499:121–130

    Article  Google Scholar 

  • Ganten D, Unger Th, Lang RE (1985) The dual role of angiotensin and vasopressin as plasma hormones and neuropeptides in cardiovascular regulation. J Pharmacol (Paris) 16 (Suppl II):51–68

    CAS  Google Scholar 

  • Gardiner SM, Bennett T (1989) Brain neuropeptides:actions on central cardiovascular control mechanisms. Brain Res Rev 14:79–116

    Article  PubMed  CAS  Google Scholar 

  • Goldman MB, Luchins DJ, Robertson GL (1988) Mechanisms of altered water metabolism in psychotic patients with polydipsia and hypernatremia. N Engl J Med 318:397–403

    Article  PubMed  CAS  Google Scholar 

  • Gutman MB, Ciriello J, Mogenson GJ (1988a) Effects of plasma angiotensin II and hypernatremia on subfornical organ neurons. Am J Physiol 254:R746–754

    Google Scholar 

  • Gutman MB, Jones DL, Ciriello J (1988b) Effect of paraventricular nucleus lesions on drinking and pressor responses to Ang II. Am J Physiol 255:R882–R887

    PubMed  CAS  Google Scholar 

  • Gutman MB, Douglas L, Jones DL, Ciriello J (1989) Contribution of nucleus medianus to the drinking and pressor responses to angiotensin II acting at subfornical organ. Brain Res 485:49–56

    Article  Google Scholar 

  • Harding JW, Jensen LL, Quirk WS, Dewey AL, Wright JW (1989) Brain angiotensin: critical role in the ongoing regulation of body fluid homeostasis and cardiovascular function. Peptides 10:261–264

    Article  PubMed  CAS  Google Scholar 

  • Hoffman WE, Ganten U, Phillips MI, Schmid PG, Schelling P, Ganten D (1978) Inhibition of drinking in water deprived rats by combined central angiotensin II and cholinergic receptor blockade. Am J Physiol 234:F41–F47

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Krupp L, Schrag D, Nilaver G, Valiquette G, Kilcoyne MM, Zimmerman EA (1982) Angiotensin immunoreactivity in vasopressin cells in rat hypothalamus and its relative deficiency in homozygous Brattleboro rats. Ann NY Acad Sci 394:135–141

    Article  PubMed  CAS  Google Scholar 

  • Huwyler T, Felix D (1980) Angiotensin II sensitive neurons in septal areas of the rat. Brain Res 195:187–195

    Article  PubMed  CAS  Google Scholar 

  • Ihamandas JH, Lind RW, Renauld LP (1989) Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamus supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res 487:52–61

    Article  Google Scholar 

  • Inenaga K, Yamashita H (1986) Excitation of neurones in the rat paraventricular nucleus in vitro by vasopressin and oxytocin. J Physiol (Lond) 370:165–180

    CAS  Google Scholar 

  • Johnson AK, Cunningham JT (1987) Brain mechanisms and drinking: the role of lamina terminalis-associated systems in extracellular thirst. Kidney Int 32:S35–S42

    Article  Google Scholar 

  • Jojart J, Joo F, Miklos L, Laszlo FA (1984) Immunoelectro-histochemical evidence for innervation of brain microvessels by vasopressin-immunoreactive neurons in the rat. Neurosci Lett 51:259–264

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S, Monckton EA (1988) Effect of peripherally administered atriopeptin III on water intake in rats. J Physiol (Lond) 396:379–387

    Google Scholar 

  • Kiss Z, van Eekelen JAM, Reul JMHM, Westphal HM, De Kloet ER (1988) Glucocorticoid receptor in magnocellular neurosecretory cells. Endocrinology 122:444–449

    Article  PubMed  CAS  Google Scholar 

  • Konecka AM, Sadowski B, Jaszczak J, Panocka I, Sroczynski J (1984) Suppression of food and water intake after intracerebroventricular infusion of morphine and naloxone in rabbits. Arch Int Physiol Biochim 92:219–226

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski S, Szczepanska-Sadowska E (1975) Mechanisms of hypovolemic thirst and interactions between hypovolemia, hyperosmolality and the antidiuretic system. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer-Verlag, Berlin, Heidelberg, New York, pp 25–35

    Google Scholar 

  • Kozlowski S, Drzewiecki K, Zurawski W (1972) Relationship between osmotic reactivity of the thirst mechanism and the angiotensin and aldosterone level in the blood of dogs. Acta Physiol Pol 23:417–425

    PubMed  CAS  Google Scholar 

  • Kozlowski S, Szczepanska-Sadowska E, Sobocinska J, Bak M, Czyzyk A (1980) Stimulation of thirst and ADH release after intracranial injection of insulin in the dog. Verh Dtsch Ges Inn Med 86:1423–1426

    CAS  Google Scholar 

  • Kretzschmar R, Landgraf R, Gjedde A, Ermisch A (1986) Vasopressin binds to microvessels from rat hippocampus. Brain Res 380:325–330

    Article  PubMed  CAS  Google Scholar 

  • Landgraf R, Neumann J, Schwarzberg H (1988) Central and peripheral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation. Brain Res 457:219–225

    Article  PubMed  CAS  Google Scholar 

  • Lappe RW, Dinish JL, Bex F et al. (1986) Effects of atrial natriuretic factor on drinking responses to central angiotensin II. Pharmacol Biochem Behav 24:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Le Goascogne C, Robel P, Gouezou M, Sonanes N, Baulieu E, Waterman M (1987) Neuro-steroids:cytochrome P-450scc in rat brain. Science 237:1212–1215

    Article  PubMed  Google Scholar 

  • Lee MC, Thrasher TN, Ramsay DJ (1981) Is angiotensin essential in drinking induced by water deprivation and cavai ligation? Am J Physiol 240:R75–R80

    PubMed  CAS  Google Scholar 

  • Lind RW, Swanson LN, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40:2–24

    Article  PubMed  CAS  Google Scholar 

  • Luttge WG, Emadian SM (1988) Further chemical differentiation of Type I and Type II adrenocorticosteroid receptors in mouse brain cytosol: evidence for a new class of glucocorticoid receptors. Brain Res 453:41–50

    Article  PubMed  CAS  Google Scholar 

  • Malvin RL, Mouw D, Vander AJ (1977) Angiotensin: physiological role in water deprivation-induced thirst of rats. Science 197:171–173

    Article  PubMed  CAS  Google Scholar 

  • Mann JEF, Johnson AK, Ganten D (1980) Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol 238:R372–R377

    PubMed  CAS  Google Scholar 

  • McAllen RM, Blessing WW (1987) Neurons (presumably Al-cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit. Neurosci Lett 73:247–252

    Article  PubMed  CAS  Google Scholar 

  • Mens WBJ, Van Dam AF, Van Wimersma Greidanus TB (1982) Influence of histamine and pentobarbitone on plasma and CSF vasopressin levels of hypophysectomized rats. Brain Res Bull 8:555–557

    Article  PubMed  CAS  Google Scholar 

  • Miller MA, Urban JH, Dorsa DM (1989) Steroid dependency of vasopressin neurons in the bed nucleus of the stria terminalis by in situ hybridization. Endocrinology 125:2335–2340

    Article  PubMed  CAS  Google Scholar 

  • Möhring J, Kohrs G, Möhring B, Petri M, Homsy E, Haack D (1978) Effects of prolonged vasopressin treatment in Brattleboro rats with diabetes insipidus. Am J Physiol 234:F106–F111

    PubMed  Google Scholar 

  • Morley JE, Flood JF (1989) The effect of neuropeptide Y on drinking in mice. Brain Res 494:129–137

    Article  PubMed  CAS  Google Scholar 

  • Morris F, Chapman DB, Sokol HW (1987) Anatomy and function of the classic vasopressin-secreting hypothalamus-neurohypophysial system. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, pp 1–89

    Google Scholar 

  • Neumann J, Schwarzberg H, Landgraf R (1988) Measurement of septal release of vasopressin and oxytocin by push-pull technique following electrical stimulation of paraventricular nucleus of the rat. Brain Res 462:181–184

    Article  PubMed  CAS  Google Scholar 

  • Nicolaïdis S, Fitzsimons JT (1975) La dependance de la prise d’eau induite par l’angiotensine II envers la fonction vasomotrice cerebrale locale chez le rat. C R Acad Sci 281D: 1417–1420

    Google Scholar 

  • Nicolaïdis S, Jeulin AC (1984) Converging projections of hydromineral imbalances and hormonal co-action upon neurons surrounding the anterior wall of the third ventricle. J Physiol (Paris) 79:406–415

    Google Scholar 

  • Okuya S, Inenaga K, Kaneko T, Yamashita H (1987) Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 402:58–67

    Article  PubMed  CAS  Google Scholar 

  • Olsson K, Dahlborn K, Nygren K, Kalberg BE, Anden NE, Eriksson L (1989) Fluid balance and arterial blood pressure during intracarotid infusions of atrial natriuretic peptide (ANP) in water-deprived goats. Acta Physiol Scand 137:249–257

    Article  PubMed  CAS  Google Scholar 

  • Pearlmutter AF, Szkrybalo M, Kim Y, Harik SI (1988) Arginine vasopressin receptors in pig cerebral microvessels, cerebral cortex and hippocampus. Neurosci Lett 87:121–126

    Article  PubMed  CAS  Google Scholar 

  • Plunkett LM, Shigematsu K, Kurihara M, Saavedra JM (1987) Localization of angiotensin II receptors along the anteroventral third ventricle area of the rat brain. Brain Res 405:205–212

    Article  PubMed  CAS  Google Scholar 

  • Raggenbass M, Tribollet E, Dreifuss JJ (1987) Electrophysiological and autoradiographical evidence of VI vasopressin receptors in the lateral septum of the rat brain. Proc Natl Acad Sci USA 84:7778–7782

    Article  PubMed  CAS  Google Scholar 

  • Raggenbass M, Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1988) Direct excitatory action of vasopressin in the lateral septum of the rat brain. Brain Res 459:60–69

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 142:191–194

    Article  Google Scholar 

  • Raizada MK, Phillips J, Crews FT, Sumners C (1987) Distinct angiotensin II receptor in primary cultures of glial cells from rat brain. Proc Natl Acad Sci USA 84:4655–4659

    Article  PubMed  CAS  Google Scholar 

  • Ramsay DJ, Reid JA (1975) Some central mechanisms of thirst in the dog. J Physiol (Lond) 253:517–525

    CAS  Google Scholar 

  • Ramsay DJ, Thrasher TN (1984) The defence of plasma osmolality. J Physiol (Paris) 79:416–420

    CAS  Google Scholar 

  • Robertson GL (1987a) Physiology of ADH secretion. Kidney Int 32:(Suppl 21)S-20–S-26

    Article  CAS  Google Scholar 

  • Robertson GL (1987b) Dipsogenic diabetes insipidus: a newly recognized syndrome caused by a selective defect in the osmoregulation of thirst. Tran Assoc Am Physicians 100:241–249

    CAS  Google Scholar 

  • Robertson GL, Aycinena P, Zerba RL (1982) Neurogenic disorders of osmoregulation. Am J Med 72:339–353

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, Evered MD (1987) Pressor action of intravenous angiotensin II reduces drinking response in rats. Am J Physiol 252:R754–R759

    PubMed  CAS  Google Scholar 

  • Rolls BJ, Rolls E (1982) Thirst. Problems in the behavioral sciences, Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenberg GA, Kyner WT, Fenstermacher JD, Patlak CS (1986) Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol 251:F485–F489

    PubMed  CAS  Google Scholar 

  • Samson WK (1987) Atrial natriuretic factor and the central nervous system. Endocrinol Metab Clin North Am 16:145–161

    PubMed  CAS  Google Scholar 

  • Samson WK (1988) Central nervous system actions of atrial natriuretic factor. Brain Res Bull 20:831–837.

    Article  PubMed  CAS  Google Scholar 

  • Sayer J, Hubbard J, Sirett N (1984) Rat Organum vasculosum laminae terminalis in vitro: responses to transmitters. Am J Physiol 247:R374–R379

    PubMed  CAS  Google Scholar 

  • Shewey LM, Boer J, Szot P, Dorsa M (1989) Regulation of vasopressin receptors and phosphoinositide hydrolysis in the septum of heterozygous and homozygous Brattleboro rats. Neuroendocrinology 50:292–298

    Article  PubMed  CAS  Google Scholar 

  • Shioya M, Tanaka J (1989) Inputs from the nucleus of the solitary tract to subfornical organ neurons projecting to the paraventricular nucleus in the rat. Brain Res 483:192–195

    Article  PubMed  CAS  Google Scholar 

  • Simon-Oppermann Ch, Gray DA, Simon E (1986) Independent osmoregulatory control of central and systemic angiotensin II concentrations in dogs. Am J Physiol 250:R918–R925

    PubMed  CAS  Google Scholar 

  • Simonnet G, Rodriguez F, Fumoux F, Czernichow P, Vincent JD (1979) Vasopressin release and drinking induced by intracranial injection of angiotensin II in monkey. Am J Physiol 237:R20–R25

    PubMed  CAS  Google Scholar 

  • Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicitation by angiotensin II. Science 181:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Sladek CD, Armstrong WE (1987) Effect of neurotransmitters and neuropeptides on vasopressin release. In: Gash DM, Boer GJ (eds) Vasopressin. Principles and properties. Plenum Press, New York, pp 275–333

    Google Scholar 

  • Stanley BG, Leibowitz SF (1984) Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci 35:2635–2642

    Article  PubMed  CAS  Google Scholar 

  • Stricker M (1978) The renin-angiotensin system and thirst: some unanswered questions. Fed Proc 37:2704–2710

    PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Kozlowski S, Sobocinska J (1974) Blood antidiuretic hormone level and osmotic reactivity of thirst mechanism in dogs. Am J Physiol 227:766–770

    PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Sobocinska J, Sadowski B (1982). Central dipsogenic effect of vasopressin. Am J Physiol 242:R372–R379

    PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Simon-Oppermann Ch, Gray DA, Simon E (1984a) Control of central release of vasopressin. J Physiol (Paris) 79:432–439

    CAS  Google Scholar 

  • Szczepanska-Sadowska E, Simon-Oppermann Ch, Gray DA, Simon E (1984b) Plasma and cerebrospinal fluid and osmolality in relation to thirst. Pflügers Arch 400:294–299

    Article  PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Sobocinska J, Kozlowski S (1987) Thirst impairment elicited by intraventricular administration of vasopressin antagonists. Peptides 8:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Szmydynger-Chodobska J, Chodobski A (1988). Effect of vasopressin on cerebrospinal fluid formation and composition under anisoosmotic conditions. Eur J Clin Invest 18:A27, abstract 121

    Google Scholar 

  • Tanaka J, Kaba H, Saito H, Seto K (1986a) Lateral hypothalamic area stimulation excites neurons in the region of the subfornical organ with efferent projections to the hypothalamic paraventricular nucleus in the rat. Brain Res 379:200–203

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Saito H, Seto K (1986b) Subfornical organ efferents influence the activity of median preoptic neurons projecting to the hypothalamic paraventricular nucleus in the rat. Exp Neurol 93:647–651

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Saito H, Kaba H (1987) Subfornical organ and hypothalamic paraventricular nucleus connections with median preoptic nucleus neurons: an electrophysiological study in the rat. Exp Brain Res 68:579–585

    PubMed  CAS  Google Scholar 

  • Tarjan E, Denton DA, Ong F, Tregear G, Wade J (1987) Effect of icv administration of CRF and POMC peptides on the sodium and water metabolism of wild rabbits. Second World Congress of Neuroscience, Budapest, Abstract

    Google Scholar 

  • Tarjan E, Denton DA, McBurnie MI (1988a) Water and sodium intake of sheep and rabbits during intracerebroventricular infusion of eledoisin. XI Congress of European Neuroscience Association, Zurich 1988, Abstract

    Google Scholar 

  • Tarjan E, Denton DA, McBurnie MI, Weisinger RS (1988b) Water and sodium intake of wild and New Zealand rabbits following angiotensin. Peptides 9:677–679

    Article  PubMed  CAS  Google Scholar 

  • Thomas WG, Sernia C (1985) Regulation of rat brain angiotensin II (AII) receptors by intravenous AII and low dietary Na+. Brain Res 345:54–61

    Article  PubMed  CAS  Google Scholar 

  • Thornton SN, Fitzsimons JT (1989) ICV porcine relaxin stimulates water intake but not sodium intake in male and female rats. Appetite 12:242

    Article  Google Scholar 

  • Thrasher TN, Keil LC, Ramsay DJ (1982) Hemodynamic, hormonal and drinking responses to reduced venous return in the dog. Am J Physiol 243:R354–R362

    PubMed  CAS  Google Scholar 

  • Tribollet E, Barberise C, Jard S, Dubois-Dauphin M, Dreifuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res 442:105–118

    Article  PubMed  CAS  Google Scholar 

  • Vijande M, Marin B, Brime J, Lopez-Sela P, Bernando R, Diaz F, Costales M (1989) Water drinking induced by insulin in humans. Appetite 12:243

    Article  Google Scholar 

  • Weindl A (1983) The blood-brain barrier and its role in the control of circulating hormone effects on the brain. In: Ganten D, Pfaff D (eds) Current topics in neuroendocrinology. Central cardiovascular control. Springer-Verlag, Berlin, Heidelberg, pp 151–186

    Google Scholar 

  • Weisinger RS, Coghlan JP, Denton DA et al. (1980) ACTH-elicited sodium appetite in sheep. Am J Physiol 239:E45–E50.

    PubMed  CAS  Google Scholar 

  • Whitaker MD, McArthur RG, Corenblum B, Davidman M, Haslam RH (1979) Idiopathic, sustained, inappropriate secretion of ADH with associated hypertension and thirst. Am J Med 67:511–515

    Article  PubMed  CAS  Google Scholar 

  • Wilson KM, Sumners C, Hathaway S, Fregly M (1986) Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res 382:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this paper

Cite this paper

Szczepanska-Sadowska, E. (1991). Hormonal Inputs to Thirst. In: Ramsay, D.J., Booth, D. (eds) Thirst. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1817-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1817-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1819-0

  • Online ISBN: 978-1-4471-1817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics