Skip to main content

Volume Receptors and the Stimulation of Water Intake

  • Conference paper
Thirst

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

It is now well established that loss of volume from the intracellular compartment and loss of volume from the extracellular compartment represent primary and independent stimuli to cerebral mechanisms which initiate drinking and secretion of arginine vasopressin (AVP). Chapter 5 is devoted to a discussion of receptors and mechanisms which stimulate thirst in response to loss of intracellular fluid (ICF) volume. The purpose of this chapter is to examine the receptors which stimulate thirst in response to a deficit in extracellular fluid (ECF) volume. The ECF is composed of interstitial and plasma compartments. As there are no known receptors monitoring the interstitial fluid volume per se the mechanisms considered here are limited to those which respond to changes in vascular volume. Thus, the terms hypo- and hypervolaemia will be used to indicate decreases and increases, respectively, in relation to normal circulating blood volume. The first aim of this chapter is to consider the evidence for and the relative importance of signals arising from peripheral cardiovascular receptors and the renal renin-angiotensin system in drinking caused by hypovolaemia. The second aim is to consider interactions between volume stimuli and osmotic stimuli arising from dehydration as this is a natural event and, in the world outside the laboratory, probably a frequent occurrence. A limited selection of references is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud FM, Thames MD (1983) Interactions of cardiovascular reflexes in circulatory control. In: Handbook of physiology, Am Physiol Soc, Sec 2, Vol III, part 2, chapter 19, pp 675–753

    Google Scholar 

  • Barney CC, Katovich MJ, Fregly MJ (1980) The effect of acute administration of an angiotensin converting enzyme inhibitor, Captopril (SQ 14, 225), on experimentally induced thirst in rats. J Pharmacol Exp Ther 212:53–57

    PubMed  CAS  Google Scholar 

  • Davis JO, Freeman RH (1976) Mechanisms of renin release. Physiol Rev 56:1–54

    PubMed  CAS  Google Scholar 

  • Eng R, Miselis RR (1981) Polydipsia and abolition of angiotensin-induced drinking after transections of subfornical organ efferent projections in the rat. Brain Res 225:200–206

    Article  PubMed  CAS  Google Scholar 

  • Evered MD, Robinson MM, Richardson MA (1980) Captopril given intracerebroventricularly, subcutaneously or by gavage inhibits angiotensin-converting enzyme activity in the rat brain. Eur J Pharmacol 68:443–449

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT (1961) Drinking by rats depleted of body fluid without increase in osmotic pressure. J Physiol (Lond) 159:297–309

    CAS  Google Scholar 

  • Fitzsimons JT (1969) The role of renal thirst factor in drinking induced by extracellular stimuli. J Physiol (Lond) 201:349–368

    CAS  Google Scholar 

  • Fitzsimons JT (1979) The physiology of thirst and sodium appetite. Cambridge University Press, Cambridge

    Google Scholar 

  • Fitzsimons JT, Elfont RM (1982) Angiotensin does contribute to drinking induced by cavai ligation in rat. Am J Physiol 243 (Regulatory, Integrative Comp Physiol 12):R558–R562

    PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Moore-Gillon MJ (1980) Drinking and antidiuresis in response to reductions in venous return in the dog: neural and endocrine mechanisms. J Physiol (Lond) 308:403–416

    CAS  Google Scholar 

  • Goetz KL (1988) Physiology and pathophysiology of atrial peptides. Am J Physiol 254 (Endocrinol Metab 17):E1–E15

    PubMed  CAS  Google Scholar 

  • Hosutt JA, Rowland N, Stricker EM (1978) Hypotension and thirst in rats after isoproterenol treatment. Physiol Behav 21:593–598

    Article  PubMed  CAS  Google Scholar 

  • Hosutt JA, Rowland N, Stricker EM (1981) Impaired drinking responses of rats with lesions of the subfornical organ. J Comp Physiol Psychol 95:104–113

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S (1984) Role of right atrial receptors in the control of drinking in the rat. J Physiol (Lond) 349:389–396

    CAS  Google Scholar 

  • Kozlowski S, Szczepanska-Sadowska E (1975) Mechanisms of hypovolaemic thirst and interactions between hypovolaemia, hyperosmolality and the antidiuretic system. In: Peters G, Fitzsimons JT, Peters-Haefeli L (eds) Control mechanisms of drinking. Springer-Verlag, Berlin, pp 25–45

    Chapter  Google Scholar 

  • Lee M-C, Thrasher TN, Ramsay DJ (1981) Is angiotensin essential in drinking induced by water deprivation and caval ligation? Am J Physiol 240 (Regulatory Integrative Comp Physiol 9):R75–R80

    PubMed  CAS  Google Scholar 

  • Lind RW, Johnson AK (1982) Central and peripheral mechanisms mediating angiotensin-induced thirst. In: Ganten D, Printz M, Phillips MI, Scholzens BA (eds) The renin angiotensin system in the brain. Springer-Verlag, Berlin, Heidelberg, pp 353–364 (Experimental Brain Research, Suppl 4)

    Google Scholar 

  • Lind RW, Thunhorst RL, Johnson AK (1984) The subfornical organ and the integration of multiple factors in thirst. Physiol Behav 32:69–74

    Article  PubMed  CAS  Google Scholar 

  • Malvin RL, Mouse D, Vander AJ (1977) Angiotensin: physiological role in water-deprivation-induced thirst of rats. Science 197:171–173

    Article  PubMed  CAS  Google Scholar 

  • Mangiapane ML, Thrasher TN, Keil LC, Simpson JB, Ganong WF (1984) Role for the subfornical organ in vasopressin release. Brain Res Bull 13:43–47

    Article  PubMed  CAS  Google Scholar 

  • Moore-Gillon MJ, Fitzsimons JT (1982) Pulmonary vein-atrial junction stretch receptors and the inhibition of drinking. Am J Physiol 242 (Regulatory Integrative Comp Physiol 11):R452–R457

    PubMed  CAS  Google Scholar 

  • Quillen Jr EW, Reid IA, Keil LC (1987) Baroreceptor influences on plasma vasopressin and drinking. In: Cowley Jr AW, Liard JF, Ansiello DA (eds) Vasopressin cellular and integrative functions. Raven Press, New York, pp 405–411

    Google Scholar 

  • Ramsay DJ, Thrasher TN (1986) Hyperosmotic and hypovolemic thirst. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, pp 83–96

    Google Scholar 

  • Ramsay DJ, Thrasher TN (1989) A physiological role for atrial peptides in endocrine control mechanisms. In: Brenner BM, Laragh JH (eds) Progress in atrial peptide research. Vol III. Raven Press, New York, pp 65–75

    Google Scholar 

  • Ramsay DJ, Rolls BJ, Wood RJ (1977a) Body fluid changes which influence drinking in the water deprived rat. J Physiol (Lond) 266:453–469

    CAS  Google Scholar 

  • Ramsay DJ, Rolls BJ, Wood RJ (1977b) Thirst following water deprivation in dogs. Am J Physiol 232 (Regulatory Integrative Comp Physiol 3) R93–R100

    PubMed  CAS  Google Scholar 

  • Rettig R, Johnson AK (1986) Aortic baroreceptor deafferentation diminishes saline-induced drinking in rats. Brain Res 370:29–37

    Article  PubMed  CAS  Google Scholar 

  • Rolls BJ, Wood RJ (1977) Role of angiotensin in thirst. Pharmacol Biochem Behav 6:245–250

    Article  PubMed  CAS  Google Scholar 

  • Samson WK (1987) Atrial natriuretic factor and the central nervous system. Endocrinol Metab Clin North Am 16:145–161

    PubMed  CAS  Google Scholar 

  • Share L (1988) Role of vasopressin in cardiovascular regulation. Physiol Rev 68:1248–1284

    PubMed  CAS  Google Scholar 

  • Simpson JB (1981) The circumventricular organs and the central actions of angiotensin. Neuroendocrinology 32:248–256

    Article  PubMed  CAS  Google Scholar 

  • Sobocinska J (1969a) Effect of cervical vagosympathectomy on osmotic reactivity of the thirst mechanism in dogs. Bull Acad Pol Sci 17:265–270

    CAS  Google Scholar 

  • Sobocinska J (1969b) Abolition of the effect of hypovolemia on the thirst threshold after cervical vagosympathectomy in dogs. Bull Acad Pol Sci 17:341–346

    CAS  Google Scholar 

  • Standaert DG, Needleman P, Saper CB (1988) Atriopeptin: neuromediator in the central regulation of cardiovascular function. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 10. Raven Press, New York, pp 63–78

    Google Scholar 

  • Stricker EM (1968) Some physiological and motivational properties of the hypovolemic stimulus for thirst. Physiol Behav 3:379–385

    Article  Google Scholar 

  • Stricker EM (1977) The renin-angiotensin system and thirst: a reevaluation. II. Drinking elicited in rats by caval ligation or isoproterenol. J Comp Physiol Psychol 91:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, Nistal-Herrera JF, Keil LC, Ramsay DJ (1981) Satiety and inhibition of vasopressin secretion after drinking in dehydrated dogs. Am J Physiol 240 (Endocrinol Metab 3):E394–E401

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Keil LC, Ramsay DJ (1982a) Hemodynamic, hormonal, and drinking responses to reduced venous return in the dog. Am J Physiol 243 (Regulatory Integrative Comp Physiol 12):R354–R362

    PubMed  CAS  Google Scholar 

  • Thrasher TN, Simpson JB, Ramsay DJ (1982b) Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology 35:68–72

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, Wade CE, Keil LC, Ramsay DJ (1984) Sodium balance and aldosterone during dehydration and rehydration in the dog. Am J Physiol 247 (Regulatory Integrative Comp Physiol 13):R76–R83

    PubMed  CAS  Google Scholar 

  • Thunhorst RL, Fitts DA, Simpson JB (1987) Separation of Captopril effects on salt and water intake by subfornical organ lesions. Am J Physiol 252 (Regulatory Integrative Comp Physiol 21):R409–R418

    PubMed  CAS  Google Scholar 

  • Zimmerman MB, Blaine EH, Strieker EM (1981) Water intake in hypovolaemic sheep: effects of crushing the left atrial appendage. Science 211:489–491

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, O’Donnell CP, Keil LC (1989) Role of cardiac receptors in the stimulation of vasopressin secretion in response to hypovolemia. Proc Int U Physiol Sci 17:490

    Google Scholar 

  • Thrasher TN, O’Donnell CP, Keil LC (1989) Role of cardiac receptors in the stimulation of vasopressin secretion in response to hypovolemia. Proc Int U Physiol Sci 17:490

    Google Scholar 

  • Stricker EM (1977) The renin-angiotensin system and thirst: a reevaluation. II. Drinking elicited in rats by caval ligation or isoproterenol. J Comp Physiol Psychol 91:1220–1231

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this paper

Cite this paper

Thrasher, T.N. (1991). Volume Receptors and the Stimulation of Water Intake. In: Ramsay, D.J., Booth, D. (eds) Thirst. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1817-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1817-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1819-0

  • Online ISBN: 978-1-4471-1817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics