Skip to main content

Effects of Eating on Drinking

  • Conference paper
Thirst

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

The relation between eating and drinking for adult mammals is defined by three characteristics. First, eating and drinking tend to occur together: they are episodic but temporally contiguous behaviours, entrained to environmental cues and occurring mainly during the waking hours. Second, eating and drinking appear to be reciprocal: sipping interrupts eating. Eating can have dehydrational consequences that elicit drinking, and drinking can disinhibit eating by preparing the palate or by removing dehydration. Third, eating and drinking serve homeostasis: ingestion will preclude and/or repair deficits in fuels, fluids or electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi A, Niijima A, Jacobs HL (1976) An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies. Am J Physiol 231:1043–1049

    PubMed  CAS  Google Scholar 

  • Almli RC, Gardina J (1974) Ad libitum drinking of rats and vascular osmolality changes. Physiol Behav 12:231–238

    Article  PubMed  CAS  Google Scholar 

  • Anderson CR, Houpt TR (1989) Pentagastrin fails to stimulate water drinking in rats. Appetite 12:195–196

    Article  Google Scholar 

  • Appia F, Ewart WR, Pittam BS, Wingate DL (1986) Convergence of sensory information from abdominal viscera in the rat brain stem. Am J Physiol 251:G169–G175

    PubMed  CAS  Google Scholar 

  • Banks RO, Fondacaro JD, Schwaiger MM, Jacobson ED (1978) Renal histamine H1 and H2 receptors: characterization and functional significance. Am J Physiol 235:F570–F575

    PubMed  CAS  Google Scholar 

  • Beaven MA, Horakova Z, Severs WB, Brodie BB (1968) Selective labeling of histamine in rat gastric mucosa: application to measurement of turnover rate. J Pharmacol Exp Ther 161:320–328

    PubMed  CAS  Google Scholar 

  • Bernstein IL, Vitiello MV (1978) The small intestine and the control of meal patterns in the rat. Physiol Behav 20:417–422

    Article  PubMed  CAS  Google Scholar 

  • Berthoud H-R, Jeanrenaud B (1982) Sham feeding-induced cephalic phase insulin release in the rat. Am J Physiol 242:E280–E285

    PubMed  CAS  Google Scholar 

  • Berthoud H-R, Niijima A, Sauter J-F, Jeanrenaud B (1983) Evidence for the role of the gastric, coeliac and hepatic branches in vagally stimulated insulin secretion in the rat. J Auton Nerv Syst 7:97–110

    Article  PubMed  CAS  Google Scholar 

  • Blair-West JR, Brook AH (1969) Circulatory changes and renin secretion in sheep in response to feeding. J Physiol (Lond) 204:15–30

    CAS  Google Scholar 

  • Bond JH, Prentiss RA, Levitt MD (1979) The effects of feeding on blood flow to the stomach, small bowel, and colon of the conscious dog. J Lab Clin Med 93:594–599

    PubMed  CAS  Google Scholar 

  • Booth DA, Pitt ME (1968) The role of glucose in insulin-induced feeding and drinking. Physiol Behav 3:447–453

    Article  CAS  Google Scholar 

  • Brandenberger G, Follenius M, Muzet A, Ehrhart J, Schieber JP (1985) Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. J Clin Endocrinol Metab 61:280–284

    Article  PubMed  CAS  Google Scholar 

  • Brandenberger G, Simon C, Follenius M (1987) Night-day differences in the ultradian rhythymicity of plasma renin activity. Life Sci 40:2325–2330

    Article  PubMed  CAS  Google Scholar 

  • Carraway R, Leeman SE (1976) Characterization of radioimmunoassayable neurotensin in the rat. J Biol Chem 251:7045–7052

    PubMed  CAS  Google Scholar 

  • Carraway R, Cochrane DE, Lansman JB, Leeman SE, Paterson BM, Welch HJ (1982) Neurotensin stimulates exocytotic histamine secretion from rat mast cells and elevates plasma histamine levels. J Physiol (Lond) 323:403–414

    CAS  Google Scholar 

  • Cechetto DF (1987) Central representation of visceral function. Fed Proc 46:17–23

    PubMed  CAS  Google Scholar 

  • Chapman HW, Epstein AN (1970) Prandial drinking induced by atropine. Physiol Behav 5:549–554

    Article  PubMed  CAS  Google Scholar 

  • Clarke LL, Ganjam VK, Fichtenbaum B, Hatfield D, Garner HE (1988) Effect of feeding on renin-angiotensin-aldosterone system of the horse. Am J Physiol 254:R524–R530

    PubMed  CAS  Google Scholar 

  • Collier G (1986) The dialogue on strategy between the economist and the resident physiologist. Appetite 7:88–89

    Google Scholar 

  • Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6:303–322

    Article  PubMed  CAS  Google Scholar 

  • D’Amato MR (1974) Derived motives. Ann Rev Psychol 25:83–106

    Article  Google Scholar 

  • Davis JD, Collins BJ, Levine MW (1975) Peripheral control of drinking: gastrointestinal filling as a negative feedback signal, a theoretical and experimental analysis. J Comp Physiol Psychol 89:985–1002

    Article  PubMed  CAS  Google Scholar 

  • Deaux E, Kakolewski JW (1971) Character of osmotic changes resulting in the initiation of eating. J Comp Physiol Psychol 74:248–253

    Article  PubMed  CAS  Google Scholar 

  • Deaux E, Sato E, Kakolewski JW (1970) Emergence of systemic cues evoking food-associated drinking. Physiol Behav 5:1177–1179

    Article  PubMed  CAS  Google Scholar 

  • de Castro JM (1988) A microregulatory analysis of spontaneous fluid intake by humans: evidence that the amount of liquid ingested and its timing is mainly governed by feeding. Physiol Behav 43:705–714

    Article  PubMed  Google Scholar 

  • Ekelund M, Hakanson R, Hedenbro J et al. (1982) Effects of insulin on serum gastrin concentrations, effect of acid secretion and histamine mobilization in the rat. Acta Physiol Scand 114:17–29

    Article  PubMed  CAS  Google Scholar 

  • Engell D (1988) Interdependency of food and water intake in humans. Appetite 10:133–141

    Article  PubMed  CAS  Google Scholar 

  • Epstein AN (1983) The neuropsychology of drinking behavior. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Plenum Press, New York, pp 367–423

    Google Scholar 

  • Epstein AN, Spector D, Samman A, Goldblum C (1964) Exaggerated prandial drinking in the rat without salivary glands. Nature 201:1342–1343

    Article  PubMed  CAS  Google Scholar 

  • Evered MD, Mogenson GJ (1976) Regulatory and secondary water intake in rats with lesions of the zona incerta. Am J Physiol 230:1049–1057

    PubMed  CAS  Google Scholar 

  • Evered MD, Mogenson GJ (1977) Impairment of fluid ingestion in rats with lesions of the zona incerta. Am J Physiol 233:R53–R58

    PubMed  CAS  Google Scholar 

  • Evered MD, Robinson MM (1984) Increased or decreased thirst caused by inhibition of angiotensin-converting enzyme in the rat. J Physiol (Lond) 348:573–588

    CAS  Google Scholar 

  • Fitzsimons JT (1957) Normal drinking in rats. J Physiol (Lond) 138:39P

    Google Scholar 

  • Fitzsimons JT, Le Magnen J (1969) Eating as a regulatory control of drinking in the rat. J Comp Physiol Psychol 67:273–283

    Article  PubMed  CAS  Google Scholar 

  • George JK, Albers HE, Carraway RE, Ferris CF (1987) Neurotensin levels in the hepatic-portal circulation are inversely related to the circadian feeding cycle in rats. Endocrinology 121:7–13

    Article  PubMed  CAS  Google Scholar 

  • Gerber JG, Nies AS (1983) The role of histamine receptors in the release of renin. Br J Pharmacol 79:57–61

    PubMed  CAS  Google Scholar 

  • Gronstad KO, Zinner MJ, Nilsson O, Dahlstrom A, Jaffe BM, Ahlman H (1987) Vagal release of serotonin into gut lumen and portal circulation via separate control mechanisms. J Surg Res 43:205–210

    Article  PubMed  CAS  Google Scholar 

  • Grossman MI (1981) Regulation of gastric acid secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press. New York, pp 659–669

    Google Scholar 

  • Gutman Y, Krausz M (1969) Regulation of food and water intake in rats as related to plasma osmolarity and volume. Physiol Behav 4:311–313

    Article  Google Scholar 

  • Gwyn DG, Leslie RA, Hopkins DA (1985) Observations on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel monkey. J Comp Neurol 239:163–175

    Article  PubMed  CAS  Google Scholar 

  • Haberich FJ (1968) Osmoreception in the portal circulation. Fed Proc 27:1137–1141

    PubMed  CAS  Google Scholar 

  • Hakanson R, Sundler F (1987) Localisation of gastric histamine: immunocytochemical observations. Med Biol 65:1–7

    PubMed  CAS  Google Scholar 

  • Hamilton RB, Norgren R (1984) Central projections of gustatory nerves in the rat. J Comp Neurol 222:560–577

    Article  PubMed  CAS  Google Scholar 

  • Houpt TR, Anderson CR (1990) Spontaneous drinking: is it stimulated by hypertonicity or hypovolemia? Am J Physiol 258:R143–R148

    PubMed  CAS  Google Scholar 

  • Houpt TR, Weixler LC, Troy DW (1986) Water drinking induced by gastric secretagogues in pigs. Am J Physiol 251:R157–R164

    PubMed  CAS  Google Scholar 

  • Hsiao S (1970) Reciprocal and additive effects of hyperoncotic and hypertonic treatments on feeding and drinking in rats. Psychonom Sci 19:303–304

    Google Scholar 

  • Hsiao S, Smutz ER (1976) Thirst-reducing and hunger-inducing effects of water and saline by stomach-tubing vs. drinking in rats. Physiol Psychol 4:111–113

    Google Scholar 

  • Hsiao S, Trankina F (1969) Thirst-hunger interaction: I. Effects of body-fluid restoration on food and water intake in water-deprived rats. J Comp Physiol Psychol 69:448–453

    Article  PubMed  CAS  Google Scholar 

  • Ionescu E, Rohner-Jeanrenaud F, Berthoud H-R, Jeanrenaud B (1983) Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112:904–910

    Article  PubMed  CAS  Google Scholar 

  • Jacquin MF, Zeigler HP (1983) Trigeminal orosensation and ingestive behavior in the rat. Behav Neurosci 97:62–97

    Article  PubMed  CAS  Google Scholar 

  • Jerome C, Smith GP (1982a) Gastric or coeliac vagotomy decreases drinking after peripheral angiotensin II. Physiol Behav 29:533–536

    Article  PubMed  CAS  Google Scholar 

  • Jerome C, Smith GP (1982b) Gastric vagotomy inhibits drinking after hypertonic saline. Physiol Behav 28:371–374

    Article  PubMed  CAS  Google Scholar 

  • Jorde R, Burhol PG (1985) Diurnal profiles of gastrointestinal regulatory peptides. Scand J Gastroenterol 20:1–4

    Article  PubMed  CAS  Google Scholar 

  • Kakolewski JW, Deaux E (1970) Initiation of eating as a function of ingestion of hypoosmotic solutions. Am J Physiol 218:590–595

    PubMed  CAS  Google Scholar 

  • Kakolewski JW, Deaux E, Christensen J, Case B (1971) Diurnal patterns in water and food intake and body weight changes in rats with hypothalamic lesions. Am J Physiol 221:711–718

    PubMed  CAS  Google Scholar 

  • Kalia M, Mesulam M (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193:467–508

    Article  PubMed  CAS  Google Scholar 

  • Kannan H, Yamashita H (1985) Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in the neural control of the cardiovascular system in rats. Brain Res 329:205–212

    Article  PubMed  CAS  Google Scholar 

  • Kikta DC, Threatte RM, Barney CC, Fregly MJ, Greenleaf JE (1981) Peripheral conversion of L-5-hydroxytryptophan to serotonin induces drinking in rats. Pharmacol Biochem Behav 14:889–893

    Article  PubMed  CAS  Google Scholar 

  • Kissileff HR (1969a) Food-associated drinking in the rat. J Comp Physiol Psychol 67:284–300

    Article  PubMed  CAS  Google Scholar 

  • Kissileff HR (1969b) Oropharyngeal control of prandial drinking. J Comp Physiol Psychol 67:309–319

    Article  PubMed  CAS  Google Scholar 

  • Kissileff HR (1973) Non-homeostatic controls of drinking. In: Epstein AN, Kissileff HR, Stellar E (eds) Neuropsychology of thirst: new findings and advances in concepts. Winston, Washington DC, pp 163–198

    Google Scholar 

  • Kobashi M, Adachi A (1986) Projection of nucleus tractus solitarius units influenced by hepatoportal afferent signal to parabrachial nucleus. J Auton Nerv Syst 16:153–158

    Article  PubMed  CAS  Google Scholar 

  • Kobashi M, Adachi A (1988) A direct hepatic osmoreceptive afferent projection from nucleus tractus solitarius to dorsal hypothalamus. Brain Res Bull 20:487–492

    Article  PubMed  CAS  Google Scholar 

  • Kostarczyk E (1986) Autonomic correlates of alimentary conditioned and unconditioned reactions in the dog. J Auton Nerv Syst 17:279–288

    Article  PubMed  CAS  Google Scholar 

  • Kral JG (1983) Behavioral effects of vagotomy in humans. J Auton Nerv Syst 9:273–281

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS (1978) Abdominal vagotomy inhibits osmotically induced drinking in the rat. J Comp Physiol Psychol 92:999–1013

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS (1983a) A probe for a histaminergic component of drinking in the rat. Physiol Behav 31:229–232

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS (1983b) Histamine plays a part in induction of drinking by food intake. Nature 301:65–66

    Article  Google Scholar 

  • Kraly FS (1984a) Physiology of drinking elicited by eating. Psychol Rev 91:478–490

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS (1984b) Preabsorptive pregastric vagally mediated histaminergic component of drinking elicited by eating in the rat. Behav Neurosci 98:349–355

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS (1985) Histamine: a role in normal drinking. Appetite 6:153–158

    PubMed  CAS  Google Scholar 

  • Kraly FS (1990) Drinking elicited by eating. In: Epstein AN, Morrison A (Eds) Progress in psychobiology and physiological psychology, vol 14. Academic Press, New York, pp 67–133

    Google Scholar 

  • Kraly FS, Arias RL (1990) Histamine in brain may have no role for histaminergic control of food-related drinking in the rat. Physiol Behav 47:5–9

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Corneilson R (1990) Angiotensin II mediates drinking elicited by eating in the rat. Am J Physiol 258:R436–R442

    PubMed  CAS  Google Scholar 

  • Kraly FS, June KR (1982) A vagally mediated histaminergic component of food-related drinking in the rat. J Comp Physiol Psychol 96:89–104

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Miller LA (1982) Histamine-elicited drinking is dependent upon gastric vagal afferents and peripheral angiotensin II in the rat. Physiol Behav 28:841–846

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Specht SM (1984) Histamine plays a major role for drinking elicited by spontaneous eating in rats. Physiol Behav 33:611–614

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Gibbs J, Smith GP (1975) Disordered drinking after abdominal vagotomy in rats. Nature 258:226–228

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Smith GP, Carty WJ (1978) Abdominal vagotomy disrupts food-related drinking in the rat. J Comp Physiol Psychol 92:196–203

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Miller LA, Hecht ES (1983) Histaminergic mechanism for drinking elicited by insulin in the rat. Physiol Behav 31:233–236

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Jerome C, Smith GP (1986) Specific postoperative syndromes after total and selective vagotomies in the rat. Appetite 7:1–17

    PubMed  CAS  Google Scholar 

  • Kwon SC, Baertschi AJ (1989) Mesenteric nerves mediate plasma vasopressin (AVP) response to splanchnic osmoreceptor stimulation in conscious rats. Soc Neurosci Abst 15:661

    Google Scholar 

  • Lehr D, Goldman W (1973) Continued pharmacologic analysis of consummatory behavior in the albino rat. Eur J Pharmacol 23:197–210

    Article  PubMed  CAS  Google Scholar 

  • Le Magnen J (1985) Hunger. Cambridge University Press, Cambridge

    Google Scholar 

  • Lepkovsky S, Lyman R, Fleming D, Nagumo M, Dimick M (1957) Gastrointestinal regulation of water and its effect on food intake and rate of digestion. Am J Physiol 188:327–331

    PubMed  CAS  Google Scholar 

  • Leslie RA, Gwyn DG, Hopkins DA (1982) The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 8:37–43

    Article  PubMed  CAS  Google Scholar 

  • Levens NR (1985) Control of intestinal absorption by the renin-angiotensin system. Am J Physiol 249:G3–G15

    PubMed  CAS  Google Scholar 

  • Lucas GA, Timberlake W, Gawley DJ (1989) Learning and meal-associated drinking: meal-related deficits produce adjustments in postprandial drinking. Physiol Behav 46:361–367

    Article  PubMed  CAS  Google Scholar 

  • Makhlouf GM (1974) The neuroendocrine design of the gut. Gastroenterology 67:159–184

    PubMed  CAS  Google Scholar 

  • Mann JFE, Johnson AK, Ganten D (1980) Plasma angiotensin II: dipsogenic levels and angiotensingenerating capacity of renin. Am J Physiol 238:R372–R377

    PubMed  CAS  Google Scholar 

  • Marwine A, Collier G (1979) The rat at the waterhole. J Comp Physiol Psychol 93:391–402

    Article  Google Scholar 

  • Mashford ML, Nilsson G, Rokaeus A, Roseli S (1978) The effect of food ingestion on circulating neurotensin-like immunoreactivity (NTLI) in the human. Acta Physiol Scand 104:244–246

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa K, Ninomiya I (1987) Changes in renal sympathetic nerve activity, heart rate, and arterial blood pressure associated with eating in cats. J Physiol (Lond) 390:229–242

    CAS  Google Scholar 

  • Mei N (1983) Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9:199–206

    Article  PubMed  CAS  Google Scholar 

  • Mei N, Garnier L (1986) Osmosensitive vagal receptors in the small intestine of the cat. J Auton Nerv Syst 16:159–170

    Article  PubMed  CAS  Google Scholar 

  • Miceli MO, Malsbury CW (1985) Brainstem origins and projections of the cervical and abdominal vagus in the golden hamster: a horseradish peroxidase study. J Comp Neurol 237:65–76

    Article  PubMed  CAS  Google Scholar 

  • Miyaoka Y, Sakaguchi T, Yamazaki M, Shingai T (1987a) Changes in water intake following pharyngolaryngeal deafferentation in the rat. Physiol Behav 40:369–371

    Article  PubMed  CAS  Google Scholar 

  • Miyaoka Y, Sawada M, Sakaguchi T, Hasegawa A, Shingai T (1987b) Differences in drinking behavior between normal and laryngectomized man. Percept Mot Skills 64:1088–1090

    Article  PubMed  CAS  Google Scholar 

  • Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250:R735–R752

    Google Scholar 

  • Mori T, Nagai K, Nakagawa H (1983) Dependence of memory of meal time upon circadian biological clock in rats. Physiol Behav 30:259–265

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru M, Jackson EK, Inagami T (1986) ß-Adrenoceptor-mediated release of angiotensin II from mesenteric arteries. Am J Physiol 250:H144–H148

    PubMed  CAS  Google Scholar 

  • Nicolaïdis S (1969) Early systemic responses to orogastric stimulation in the regulation of food and water balance. Functional and electrophysiological data. Ann NY Acad Sci 157:1176–1203

    Article  PubMed  Google Scholar 

  • Norgren R (1983) Afferent interactions of cranial nerves involved in ingestion. J Auton Nerv Syst 9:67–77

    Article  PubMed  CAS  Google Scholar 

  • Norgren R, Grill H (1982) Brain-stem control of ingestive behavior. In: Pfaff DW (ed) The physiological mechanisms of motivation. Springer-Verlag, New York, pp 99–131

    Chapter  Google Scholar 

  • Norgren R, Smith GP (1988) Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 273:207–223

    Article  PubMed  CAS  Google Scholar 

  • Norgren R, Nishijo H, Travers SP (1989) Taste responses from the entire gustatory apparatus. Ann NY Acad Sci 575:246–263

    Article  PubMed  CAS  Google Scholar 

  • Nose H, Morita M, Yawata T, Morimoto T (1986) Continuous determination of blood volume on conscious rats during water and food intake. Jpn J Physiol 36:215–218

    Article  PubMed  CAS  Google Scholar 

  • Novin D (1964) The effects of insulin on water intake in the rat. In: Wayner MJ (ed) Thirst in the regulation of body water. Pergamon Press, Oxford, pp 177–184

    Google Scholar 

  • Novin D, Miller NE (1962) Failure to condition thirst induced by feeding dry food to hungry rats. J Comp Physiol Psychol 55:373–374

    Article  PubMed  CAS  Google Scholar 

  • Oatley K, Toates FM (1969) The passage of food through the gut of rats and its uptake of fluid. Psychonom Sci 16:225–226

    Google Scholar 

  • Oishi R, Itoh Y, Nishibori M, Saeki K (1987) Feeding-related circadian variation in tele-methylhistamine levels of mouse and rat brains. J Neurochem 49:541–547

    Article  PubMed  CAS  Google Scholar 

  • Palier MS, Hostetter TH (1986) Dietary protein increases plasma renin and reduces pressor reactivity to angiotensin II. Am J Physiol 251:F34–F39

    Google Scholar 

  • Phillips PA, Rolls BJ, Ledingham JG, Morton JJ (1984) Body fluid changes, thirst and drinking in man during free access to water. Physiol Behav 33:357–363

    Article  PubMed  CAS  Google Scholar 

  • Radke KJ, Selkurt EE, Willis LR (1985) The role of histamine H1 and H2 receptors in the canine kidney. In: Berlyne GM (ed) Renal physiology. Karger, Basel, pp 100–111

    Google Scholar 

  • Rolls BJ (1975) Interaction of hunger and thirst in rats with lesions of the preoptic area. Physiol Behav 14:537–543

    Article  PubMed  CAS  Google Scholar 

  • Rolls BJ, Wood RJ, Stevens RM (1978) Palatability and body fluid homeostasis. Physiol Behav 20:15–19

    Article  PubMed  CAS  Google Scholar 

  • Rolls BJ, Wood RJ, Rolls ET (1980) Thirst: the initiation, maintenance, and termination of drinking. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology, vol 9. Academic Press, New York, pp 263–321

    Google Scholar 

  • Rowland N, Nicolaïdis S (1976) Metering of fluid intake and determinants of ad libitum drinking in rats. Am J Physiol 231:1–8

    PubMed  CAS  Google Scholar 

  • Rowland NE, Caputo FA, Fregly MJ (1987) Body fluid shifts and elevation in plasma renin activity accompany meal-associated drinking in rats. Fed Proc 46:1434

    Google Scholar 

  • Rubin W, Schwartz B (1983) Identification of the serotonin-synthesizing endocrine cells in the rat stomach by electron microscopic radioautography and amine fluorescence. Gastroenterology 84:34–50

    PubMed  CAS  Google Scholar 

  • Sawchenko PE (1983) Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst 9:13–26

    Article  PubMed  CAS  Google Scholar 

  • Simansky KJ, Smith GP (1983) Acute abdominal vagotomy reduces drinking to peripheral but not central angiotensin II. Peptides 4:159–163

    Article  PubMed  CAS  Google Scholar 

  • Simansky KJ, Jerome C, Santucci A, Smith GP (1982) Chronic hypodipsia to intraperitoneal and subcutaneous hypertonic saline after vagotomy. Physiol Behav 28:367–370

    CAS  Google Scholar 

  • Skinner TL, Randall DC (1985) Behaviorally conditioned changes in atrio-ventricular transmission in awake dogs. J Auton Nerv Syst 12:23–34

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1986) Peripheral mechanisms for the maintenance and termination of drinking in the rat. In: de Caro G, Epstein AN (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, pp 265–277

    Google Scholar 

  • Smith GP, Jerome C (1983) Effects of total and selective abdominal vagotomies on water intake in rats. J Auton Nerv Syst 9:259–271

    Article  PubMed  CAS  Google Scholar 

  • Soll AH, Berglindh T (1987) Physiology of isolated gastric glands and parietal cells: receptors and effectors regulating function. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn. Raven Press, New York, pp 883–909

    Google Scholar 

  • Soll AH, Lewin KJ, Beaven MA (1981) Isolation of histamine-containing cells from rat gastric mucosa: biochemical and morphologic differences from mast cells. Gastroenterology 80:717–727

    PubMed  CAS  Google Scholar 

  • Spiteri NJ (1982) Circadian patterning of feeding, drinking and activity during diurnal food access in rats. Physiol Behav 28:139–147

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Hoebel BG, Leibowitz SF (1983) Neurotensin: effects of hypothalamic and intravenous injections on eating and drinking in rats. Peptides 4:493–500

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L, Baertschi AJ (1984) Activation of portal-hepatic osmoreceptors in rats: role of calcium, acetylcholine and cyclic AMP. J Auton Nerv Syst 11:297–308

    Article  PubMed  CAS  Google Scholar 

  • Strubbe JH, Spiteri NJ, Alingh Prins AJ (1986) Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiol Behav 36:647–651

    Article  PubMed  CAS  Google Scholar 

  • Toates FM (1979) Homeostasis and drinking. Behav Brain Sci 2:95–139

    Article  Google Scholar 

  • Turkkan JS (1989) Classical conditioning: the new hegemony. Behav Brain Sci 12:121–179

    Article  Google Scholar 

  • Vijande M, Marin B, Brime J et al. (1989) Water drinking induced by insulin in humans. Appetite 12:243

    Article  Google Scholar 

  • Walsh LL, Grossman SP (1973) Zona incerta lesions: disruption of regulatory water intake. Physiol Behav 11:885–887

    Article  PubMed  CAS  Google Scholar 

  • Weingarten HP (1985) Stimulus control of eating: implications for a two-factor theory of hunger. Appetite 6:387–401

    PubMed  CAS  Google Scholar 

  • Weingarten HP, Powley TR (1980) A new technique for the analysis of phasic gastric acid responses in the unanesthetized rat. Lab Anim Sci 30:673–680

    PubMed  CAS  Google Scholar 

  • Weingarten HP, Powley TR (1981) Pavlovian conditioning of the cephalic phase of gastric acid secretion in the rat. Physiol Behav 27:217–221

    Article  PubMed  CAS  Google Scholar 

  • Weissman A (1972) Elicitation by a discriminative stimulus of water-reinforced behavior and drinking in water-satiated rats. Psychonom Sci 28:155–156

    Google Scholar 

  • Zambie H, Baxter DJ, Baxter L (1980) Influences of conditioned incentive stimuli on water intake. Can J Psychol 34:82–85

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this paper

Cite this paper

Kraly, F.S. (1991). Effects of Eating on Drinking. In: Ramsay, D.J., Booth, D. (eds) Thirst. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1817-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1817-6_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1819-0

  • Online ISBN: 978-1-4471-1817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics