Skip to main content

Developmental Biology of Specialized Conduction Tissue

  • Chapter
Neonatal Heart Disease
  • 335 Accesses

Abstract

During the last 20 to 30 years there has been an astonishing increase in the understanding of both the anatomical substrates and clinical aspects of cardiac arrhythmias in the neonate and child. Significant advances in the delineation of the underlying cellular mechanisms responsible for these arrhythmias have also taken place. In general terms, the anatomical aspects of the conduction system were the first to be unravelled, followed by improved embryological insights. More recently new techniques have enabled investigators to examine the electrophysiologic characteristics of whole tissues, single cells and small patches of membrane. Concomitant with these advances, clinicians were able to investigate the mechanisms of arrhythmias with improved non-invasive and invasive modalities. However, the picture at this time is far from complete. A greater emphasis is now being placed on the understanding of changes which occur during the development of the conduction system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abella JB, Teixeira OHP, Misra KP, Hastreiter AR (1972) Changes of atrioventricular conduction with age in infants and children. Am J Cardiol 30: 876–883

    Article  PubMed  CAS  Google Scholar 

  2. Anderson RH, Taylor IM (1972) Development of atrioventricular specialised tissue in human heart. Br Heart J 34: 1205–1214

    Article  PubMed  CAS  Google Scholar 

  3. Anderson RH, Janse MJ, van Capelle FJL, Billette J, Becker AE, Durrer D (1974) A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ Res 35: 909–922

    PubMed  CAS  Google Scholar 

  4. Anderson RH, Becker AE, Wenink AC, Janse M (1976) The development of the cardiac specialized tissue. In: Wellens HJ, Lie KI, Janse MJ (eds) The conduction system of the heart: structure, function, and clinical implications. Martinus Nijhoff, The Hague, pp 3–28

    Google Scholar 

  5. Anderson KR, Ho SY, Anderson RH (1979) The location and vascular supply of the sinus node in the human heart. Br Heart J 41: 28–32

    Article  PubMed  CAS  Google Scholar 

  6. Anderson RH, Ho SY, Becker AE (1987) Gross anatomy and microscopy of the conducting system. In: Mandel WJ (ed). Cardiac arrhythmias: their mechanisms, diagnosis, and management. JB Lippincott, Philadelphia, pp 13–52

    Google Scholar 

  7. Arguello C, Alanis J, Valenzuela B (1986) Electrophysiological and ultrastructural study of the atrioventricular canal during the development of the chick embryo. J Mol Cell Cardiol 18: 499–510

    Article  PubMed  CAS  Google Scholar 

  8. Bader CR, Bertrand D, Dupin E (1985) Voltage-dependent potassium currents in developing neurones from quail mesecephalic neural crest. J Physiol (London) 366: 129–151

    CAS  Google Scholar 

  9. Baumgold J, Parent JB, Spector I (1983) Development of sodium channels during differentiation of chick skeletal muscle in culture. II. 22 Na+ uptake and electrophy-siological studies. J Neurosci 3: 1004–1013

    PubMed  CAS  Google Scholar 

  10. Billette J (1987) Atrioventricular nodal activation during premature stimulation of the atrium. Am J Physiol 252-. H163–H177

    Google Scholar 

  11. Brodsky S, Mirowski MV, Krovetz J, Rowe RD (1971) Recordings of His bundle and other conduction tissue potentials in children. J Pediatr 79: 61–67

    Article  PubMed  CAS  Google Scholar 

  12. Bromberger-Barnea B, Caldini P, Wittenstein GW (1959) Transmembrane potentials of the normal and hypothermic human heart. Circ Res 7: 138–140

    PubMed  CAS  Google Scholar 

  13. Brown H (1982) Electrophysiology of the sinoatrial node. Physiol Rev 62: 505–530

    PubMed  CAS  Google Scholar 

  14. Bush HL, Gelband H, Hoffman BF, Malm JR (1971) Electrophysiologic basis for supraventricular arrhythmias. Arch Surg 103: 620–625

    Article  PubMed  Google Scholar 

  15. Cavoto FV, Kelleher GJ, Roberts J (1974) Electrophysiologic changes in the rat atrium with age. Am J Physiol 226: 1293–1297

    PubMed  CAS  Google Scholar 

  16. Clark EB, Van Mierop LHS (1989) Development of the cardiovascular system. In: Adams FH, Emmanouillides GC, Reimenschneider TA (eds) Heart disease in infants, children, and adolescents. Williams and Wilkins, Baltimore, pp 2–15

    Google Scholar 

  17. Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. J Gen Physiol 78: 383–411

    Article  PubMed  CAS  Google Scholar 

  18. Colatsky TJ (1982) Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. An effect on steady-state sodium currents? Circ Res 50: 17–27

    PubMed  CAS  Google Scholar 

  19. Couch JR, West TC, Hoff HE (1969) Development of the action potential of the prenatal rat heart. Circ Res 24: 19–31

    PubMed  CAS  Google Scholar 

  20. Danilo P (1984) Electrophysiology of the fetal and neonatal heart. In: Legato MJ (ed) The developing heart. Martinus Nijhoff, Boston, pp 21–38

    Google Scholar 

  21. Davies MJ, Anderson RH, Becker AE (1983) The conduction system of the heart. Butterworths, London.

    Google Scholar 

  22. DeHaan RL, McDonald TF, Sachs HF (1975) Development of tetrodotoxin sensitivity of embryonic chick heart cells in vitro. In: Lieberman M, Sano T (eds): Development and physiological correlates of cardiac muscle. Raven Press, New York, pp 155–167

    Google Scholar 

  23. DiFrancesco D, Ojeda C (1980) Properties of the current If in the sinoatrial node of the rabbit compared with those of the current Ik2 in Purkinje fibres. J Physiol (London) 308: 353–367

    CAS  Google Scholar 

  24. Draper MH, Weidmann S (1951) Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol (London) 115: 74–94

    CAS  Google Scholar 

  25. DuBrow IW, Fisher EA, Amat-Y-Leon F et al. (1975) Comparison of cardiac refractory periods in children and adults. Circulation 51: 485–491

    PubMed  CAS  Google Scholar 

  26. Escande D, Loisance D, Planche C, Coraboeuf E (1985) Age-reflated changes of action potential plateau shape in isolated human atrial fibers. Am J Physiol 249: H843–H850

    PubMed  CAS  Google Scholar 

  27. Ezrin AM, Epstein K, Bassett AL, Myerburg RJ, Gelband H (1980) Effects of procaine amide on cellular electrophysiology of neonatal and adult dog myocardium. Dev Pharmacol Ther 1: 352–363

    CAS  Google Scholar 

  28. Ezrin AM, Bassett AL, Gelband H (1983) Cellular electrophysiology in the developing mammalian heart: modification by antiarrhythmic agents. In: Roberts NK, Gelband H (eds) Cardiac arrhythmias in the neonate, infant, and child. Appleton-Century-Crofts, New York, pp 37–58

    Google Scholar 

  29. Fozzard HA, Hiraoka M (1973) The positive dynamic current and its inactivation properties in cardiac Purkinje fibers. J Physiol (London) 234: 569–586

    CAS  Google Scholar 

  30. Fujii S, Ayer RK Jr, De Haan RL (1988) Development of the fast sodium current in early embryonic chick heart cells. J Memb Biol 101: 209–223

    Article  CAS  Google Scholar 

  31. Garson Jr A (1983) Derivation of the electrocardiogram. In: Garson Jr A (ed) The electrocardiogram in infants and children: a systematic approach. Lea and Febiger, Philadelphia, pp 36–48

    Google Scholar 

  32. Gelband H, Steeg CN, Bigger JT Jr (1971) Use of massive doses of procaineamide in the treatment of ventricular tachycardia in infancy. Pediatrics 48:110- 115

    Google Scholar 

  33. Gennser G, Nilsson E (1970) Excitation and impulse conduction in the human fetal heart. Acta Physiol Scand 79: 305–320

    Article  PubMed  CAS  Google Scholar 

  34. Giles W, van Ginneken A, Shibata EF (1986) Ionic currents underlying cardiac pacemaker activity: a summary of voltage-clamp data from single cells. In: Nathan RD (ed) Cardiac muscle: the regulation of excitation and contraction. Academic Press Inc, New York, pp 1–27

    Google Scholar 

  35. Gillette PC, Garson Jr A (1981) Intracardiac electrophysiologic studies: use in determining the site and mechanisms of dysrhythmias. In: Gillette PC, Garson Jr A (eds) Pediatric cardiac dysrhythmias. Grune and Stratton, New York, pp 77–120

    Google Scholar 

  36. Goldberg PB, Roberts J (1976) Effect of age on cardiac pacemaker sensitivity to lidocaine and quinidine. Clin Res 24: 219 (abstract)

    Google Scholar 

  37. Goldberg PB, Baskin SI, Roberts J (1975) Effects of aging on ionic movements of atrial muscle. Fed Proc 34: 188–190

    PubMed  CAS  Google Scholar 

  38. Goldman D (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27: 37–60

    Article  PubMed  CAS  Google Scholar 

  39. Gough WB, Moore EN (1975) The differences in atrioventricular conduction of premature beats in young and adult goats. Circ Res 37: 48–58

    PubMed  CAS  Google Scholar 

  40. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sinoatrial cells. J Physiol (London) 395: 233–253

    CAS  Google Scholar 

  41. Hamra M, Danilo P Jr, Rosen MR (1988) Developmental changes in the effects of nadolol on adult and neonatal canine Purkinje fibers. Dev Pharmacol Ther 11: 155–165

    PubMed  CAS  Google Scholar 

  42. Hess P (1990) Cardiac calcium channels. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology from cell to bedside. Saunders, Philadelphia, pp 10–17

    Google Scholar 

  43. Hesslein P, Gow R, D’Souza J, Finlay C, MacLeod S, Rowe R (1985) Age-dependent verapamil kinetics affect pediatric oral dose requirements. Second World Congress of Pediatric Cardiology, New York, (abstract )

    Google Scholar 

  44. Hewett KW, Rosen MR (1985) Developmental changes in the rabbit sinus node action potential and its response to adrenergic agonists. J Pharmacol Exp Ther 235: 308–312

    PubMed  CAS  Google Scholar 

  45. Hirota A, Kamino K, Komura H, Sakai T (1987) Mapping of early development of electrical activity in the embryonic chick heart using multiple-site optical recording. J Physiol (London) 383: 711–728

    CAS  Google Scholar 

  46. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117: 500–544

    CAS  Google Scholar 

  47. Hoffman BF, Cranefield PC (1960) Electrophysiology of the heart. Futura, New York

    Google Scholar 

  48. Hoffman BF, Cranefield PF (1964) The physiological basis of cardiac arrhythmias. Am J Med 37: 670–684

    Article  PubMed  CAS  Google Scholar 

  49. Hudson REB (1967) Surgical pathology of the conducting system of the heart. Br Heart J 29: 646–670

    Article  PubMed  CAS  Google Scholar 

  50. Irisawa H, Hagiwara N (1988): Pacemaker mechanism of mammalian sinoatrial node cells. In: Mazgalev T, Dreifus LS, Michelson EL (eds) Electrophysiology of the sinoatrial and atrioventricular nodes. Alan R Liss Inc, New York, pp 33–52

    Google Scholar 

  51. James TN (1961) Anatomy of the human sinus node. AnatRec 141: 109–139

    CAS  Google Scholar 

  52. James TN, Sherf L (1971) Specialized tissues and preferential conduction in the atria of the heart. Am J Cardiol 28: 414–427

    Article  PubMed  CAS  Google Scholar 

  53. Janse MJ, Anderson RH (1974) Specialized internodal atrial pathways — fact or fiction? Eur J Cardiol 2:117- 118

    Google Scholar 

  54. Janse MJ, Anderson RH, van Capelle FJL, Durrer D (1976) A combined electrophysiological and anatomical study of the human fetal heart. Am Heart J 91: 556–562

    Article  PubMed  CAS  Google Scholar 

  55. Janse MJ, van Capelle FJL, Anderson RH, Touboul P, Billette J (1976) Electrophysiology and structure of the atrioventricular node of the isolated rabbit heart. In: Wellens HJJ, Lie KI, Janse MJ (eds) The conduction system of the heart. Stenfert Kroese, Leiden, pp 296–315

    Google Scholar 

  56. Jose AD, Collison D (1970) The normal range and determinants of the intrinsic heart in man. Cardiovasc Res 4: 160–167

    Article  PubMed  CAS  Google Scholar 

  57. Josephson IR, Sperelakis N (1989) Developmental changes in the inwardly-rectifying K current. Circulation 80 (Suppl II): 144 (abstract)

    Google Scholar 

  58. Josephson ME, Seides SF (1979) Clinical cardiac electrophysiology: techniques and interpretations. Lea and Febiger, Philadelphia

    Google Scholar 

  59. Kenyon JL, Gibbons WR (1979) 4-aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73: 139–157

    Google Scholar 

  60. Klitzner TS, Chen F, Friedman WF (1989) Emergence of low threshold calcium currents with maturation in ventricular myocytes. Circulation 80 (Suppl II): 143 (abstract)

    Google Scholar 

  61. Kugler JD (1981) Sinoatrial node dysfunction. In: Gillette PC, Garson JA (eds) Pediatric cardiac dysrhythmias. Grune and Stratton, New York, pp 265–294

    Google Scholar 

  62. Kunze DL, Lacerda AE, Wilson DL, Brown AM (1987) Sodium currents and sodium channels in neonatal and adult rat cardiac myocytes. In: Noble D, Powell T (eds): Electrophysiology of single cardiac cells. Academic Press Limited, London, pp 139–150

    Google Scholar 

  63. Lev M, Bharati S (1977) Anatomy of the conduction system in normal and congenitally abnormal hearts. In: Roberts NK, Gelband H (eds) Cardiac arrhythmias in the neonate, infant, and child. Appleton-Century- Crofts, New York, pp 29–54

    Google Scholar 

  64. Litovsky SH, Antzelevitch C (1989) Rate dependence of action potential duration and refractoriness in canine ventricular endocardium differs from that of epicardium; role of the transient outward current. J Am Coll Cardiol 14: 1053–1066

    Article  PubMed  CAS  Google Scholar 

  65. Malfatto G, Zaza A, Forster M, Sodowick B, Danilo P Jr, Rosen MR (1988) Electrophysiologic, inotropic and antiarrhythmic effects of propafenone, 5-hydroxypro-pafenone and N-depropylpropafenone. J Pharmacol Exp Ther 246: 419–426

    PubMed  CAS  Google Scholar 

  66. Mary-Rabine L, Rosen MR (1978) Lidocaine effects on action potentials of Purkinje fibers from neonatal and adult dogs. J Pharmacol Exp Ther 205: 204–211

    PubMed  CAS  Google Scholar 

  67. Mary-Rabine L, Albert A, Pham TD et al. (1983) The relationship of human atrial cellular electrophysiology to clinical function and ultrastructure. Circ Res 52: 188–199

    PubMed  CAS  Google Scholar 

  68. Mason JW (1980) Overdrive suppression in the trans-planted heart: effect of the autonomic nervous system on human sinus node recovery. Circulation 62:688- 696

    Google Scholar 

  69. McCormack J, Gelband H, Xu H, Villafane J, Stolfi A, Pickoff AS (1988) Atrioventricular nodal function in the immature canine heart. Pediatr Res 23: 99–103

    Article  PubMed  CAS  Google Scholar 

  70. Meijlar FL, Janse MJ (1988) Morphology and electrophysiology of the mammalian atrioventricular node. Physiol Rev 68: 608–647

    Google Scholar 

  71. Young M-L, Ramza BM, Tan RC, Joyner RW (1987) Adenosine and hypoxia effects on atrioventricular node of adult and neonatal rabbit hearts. Am J Physiol 253: H1192–H1198

    PubMed  CAS  Google Scholar 

  72. Young M-L, Tan RC, Ramza BM, Joyner RW (1989) Effects of hypoxia on atrioventricular node of adult and neonatal rabbit hearts. Am J Physiol 256: H1337–H1343

    PubMed  CAS  Google Scholar 

  73. Morikawa Y, Rosen MR (1984) Developmental changes in the effects of lidocaine on the electrophysiological properties of canine Purkinje fibers. Circ Res 55: 633–641

    PubMed  CAS  Google Scholar 

  74. Nagata F (1966) An experimental study on the conduction of excitation in the AV nodal region. Jpn Circ J 30: 1507–1527

    Article  PubMed  CAS  Google Scholar 

  75. Nakayama T, Kurachi Y, Noma A, Irisawa H (1984) Action potential and membrane currents of single pacemaker cells of the rabbit heart. Pflugers Archiv 402: 248–257

    Article  PubMed  CAS  Google Scholar 

  76. Nerbonne JM, Gurney AM, Rayburn HB (1986) De-velopment of the fast, transient outward K current in embryonic sympathetic neurones. Brain Res 378: 197–202

    Article  PubMed  CAS  Google Scholar 

  77. Noble D, Tsien RW (1968) The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibers. J Physiol (London) 195: 185–214

    CAS  Google Scholar 

  78. Noble D, Tsien RW (1969) Outward membrane currents activated in the plateau range of potentials of Purkinje fibers. J Physiol (London) 200: 205–231

    CAS  Google Scholar 

  79. Noma A, Morad M, Irisawa H (1983) Does the “Pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? Pflugers Arch 397: 190–194

    Article  PubMed  CAS  Google Scholar 

  80. Osaka T, Ramza BM, Tan RC, Joyner RW (1989) Developmental changes in the electrophysiologic properties of rabbit papillary muscles. Pediatr Res 26: 543–547

    Article  PubMed  CAS  Google Scholar 

  81. Paes de Carvalho A, de Almeida DF (1960) Spread of activity through the atrioventricular node. Circ Res 8: 801–809

    Google Scholar 

  82. Paes de Carvalho A, de Mello WC, Hoffman BF (1959) Electrophysiological evidence for specialized fiber types in rabbit atrium. Am J Physiol 196: 483–488

    Google Scholar 

  83. Patten BM (1956) Development of the sinoventricular conduction system. Univ Mich Med Bull 22: 1–21

    PubMed  CAS  Google Scholar 

  84. Pennefather P, Cohen JS (1990) Molecular mechanisms of cardiac K+-channel regulation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology from cell to bedside. Saunders, Philadelphia, pp 17–28

    Google Scholar 

  85. Reder RF, Miura DS, Danilo Jr P, Rosen MR (1981) The electrophysiological properties of normal neonatal and adult canine cardiac Purkinje fibers. Circ Res 48: 658–668

    PubMed  CAS  Google Scholar 

  86. Renaud JF, Kazazoglou T, Schmid A, Romey G, Lazdunski M (1984) Differentiation of receptor sites for[3H]nitrendipine in chick hearts and physiological relation to the slow Ca channel and to excitation- contraction coupling. Eur J Biochem 139: 673–681

    Article  PubMed  CAS  Google Scholar 

  87. Riccioppo N, Sperelakis N (1985) Effects of lidocaine, procaine, procainamide and quinidine on electrophysiological properties of cultured embryonic chick hearts. Br J Pharmacol 86: 817–826

    Google Scholar 

  88. Roberts NK, Gillette PC (1977) Clinical electrophysiologic data in the investigation of an arrhythmia: a review of techniques and normal values. In: Roberts NK, Gelband H (eds) Cardiac arrhythmias in the neonate, infant, and child. Appleton-Century-Crofts, New York, pp 133–157

    Google Scholar 

  89. Roberts NK, Olley PM (1972) His bundle recordings in children with normal hearts and congenital heart disease. Circulation 45: 295–299

    PubMed  CAS  Google Scholar 

  90. Rosen MR, Wit AL, Hoffman BF (1975) Electrophysiology and pharmacology of cardiac arrhythmias. VI. Cardiac effects of verapamil. Am Heart J 89: 665-673

    Google Scholar 

  91. Rosenbaum MB, Elizari MV, Lazzari JO (1970) The hemiblocks. Tampa Tracings, Florida

    Google Scholar 

  92. Rossi C (1972) Histopathology of the conducting system. G Ital Cardiol 2: 484–491

    PubMed  CAS  Google Scholar 

  93. Rougier O (1990) Ionic currents underlying atrial electrogenesis. In: Touboul P, Waldo AL (eds) Atrial arrhythmias: current concepts and management. Mosby Year Book, St. Louis, pp 42–52

    Google Scholar 

  94. Schneeweiss A (1986) Drug therapy in infants and children with cardiovascular diseases. Lea and Febiger, Philadelphia

    Google Scholar 

  95. Shigenobu K, Sperelakis N (1971) Development of sensitivity to tetrodotoxin of chick embryonic hearts with age. J Mol Cell Cardiol 3: 271–286

    Article  PubMed  CAS  Google Scholar 

  96. Shimizu Y, Tasaki K (1966) Electrical excitability of developing cardiac muscle in chick embryos. Tohoku J Exp Med 88: 49–56

    Article  PubMed  CAS  Google Scholar 

  97. Shrier A, Clay JR (1986) Repolarization currents in embryonic chick atrial heart cells. Biophys J 50:861- 874

    Google Scholar 

  98. Singh BN (1987) Effects of antiarrhythmic drugs on cardiac action potential and in vivo cardiac electrophysiology. In: Yu PN, Goodwin JF (eds) Progress in cardiology, 15. Lea and Febiger, Philadelphia, pp 37–86

    Google Scholar 

  99. Spinelli W, Rosen MR (1986) Frequency-dependent actions of phenytoin in adult and young canine Purkinje fibers. J Pharmacol Exp Ther 238: 794–801

    PubMed  CAS  Google Scholar 

  100. Spinelli W, Danilo P Jr, Buchtal SD, Rosen MR (1986) Developmental changes in the effects of beta- adrenergic blocking concentrations of propranolol on canine Purkinje fibers. Dev Pharmacol Ther 9: 412–426

    PubMed  CAS  Google Scholar 

  101. Tawara S (1906) Das Reizleitungssystem des Saugetierherzens. Gustav Fischer, Jena

    Google Scholar 

  102. Thorel C (1909) Verlaufige Mitteilung uber eine besondere Muskelverbindung zwischen der Cava Superior und dem Hisschen Bundel. Acta Neerlandica Morphologiae Normalis et Pathologicae. 4: 97

    Google Scholar 

  103. Toda N (1980) Age-related changes in the transmembrane potential of isolated rabbit sino-atrial nodes and atria. Cardiovasc Res 14: 58–63

    Article  PubMed  CAS  Google Scholar 

  104. Tranum-Jensen J, Janse MJ (1982) Fine structural identification of individual cells subjected to microelec- trode recording in perfused cardiac preparations. J Mol Cell Cardiol 14: 233–247

    Article  PubMed  CAS  Google Scholar 

  105. Trautwein W, Dudel J (1954) Aktionspotential und Mechanogramm des Warmbluterherzmuskels als Funktion der Schlagfrequenz. Pflugers Arch Ges Physiol 260: 24–39

    Article  CAS  Google Scholar 

  106. Tse WW (1973) Evidence of presence of automatic fibers in the canine atrioventricular node. Am J Physiol 225: 716–723

    PubMed  CAS  Google Scholar 

  107. Tuganowski W, Cekanski AP (1971) Electrical activity of a single fibre of the human embryonic heart. Pflugers Arch 323: 21–26

    Article  PubMed  CAS  Google Scholar 

  108. Untereker WJ, Danilo Jr P, Rosen MR (1984) Developmental changes in action potential duration, refractoriness, and conduction in the canine ventricular conducting system. Pediatr Res 18: 53–58

    PubMed  CAS  Google Scholar 

  109. Van Mierop LHS (1967) Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212: 407–415

    PubMed  Google Scholar 

  110. Van Mierop LHS, Gessner IH (1970) The morphologic development of the sinoatrial node in the mouse. Am J Cardiol 25: 204–212

    Article  PubMed  Google Scholar 

  111. Vaughan-Williams EM (1984) A classification of anti-arrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24: 129–147

    PubMed  CAS  Google Scholar 

  112. Viewig WVR, Alpert JS, Hagan AD (1975) Origin of the sinoatrial node and atrioventricular node arteries in right, mixed, and left inferior emphasis systems. Cathet Cardiovasc Diagn 1: 361–373

    Article  Google Scholar 

  113. Wei A, Salkoff L (1986) Occult Drosophila calcium channels and twinning of calcium and voltage- activated potassium channels. Science 233: 780–782

    Article  PubMed  CAS  Google Scholar 

  114. Weidmann S (1955) The effect of cardiac membrane potential on the rapid availability of the sodium- carrying system. J Physiol (London) 127: 213–224

    CAS  Google Scholar 

  115. Weidmann S (1956) Elektrophysiologie der Herzmus- kelfaser. Huber, Bern

    Google Scholar 

  116. Weiss RE. Horn R (1986) Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science 233: 361–364

    Article  PubMed  CAS  Google Scholar 

  117. Wollner DA, Catterall WA (1985) Antigenic differences among the voltage-sensitive sodium channels in the peripheral and central nervous systems and skeletal muscle. Brain Res 331: 145–149

    Article  PubMed  CAS  Google Scholar 

  118. Yaari Y, Hamon B, Lux HD (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235: 680–682

    Article  PubMed  CAS  Google Scholar 

  119. Yabek S (1984) Electrophysiologic evaluation. In: Yabek S, Gillette PC, Kugler JD (eds) The sinus node in pediatrics. Churchill Livingstone, New York, pp 67–88

    Google Scholar 

  120. Yabek SM, Kato R, Singh BN (1985) Acute effects of amiodarone on the electrophysiologic properties of isolated neonatal and adult cardiac fibers. J Am Coll Cardiol 5: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  121. Yabek SM, Kato R, Singh BN (1985) Effects of hypoxia on the cellular electrical activity of adult and neonatal canine ventricular myocardium. Pediatr Res 19: 1263–1267

    Article  PubMed  CAS  Google Scholar 

  122. Yabek SM, Kato R, Ikeda N, Singh BN (1987) Effects of flecainide on the cellular electrophysiology of neonatal and adult cardiac fibers. Am Heart J 113: 70–76

    Article  PubMed  CAS  Google Scholar 

  123. Yabek SM, Kato R, Ikeda N, Singh BN (1988) Cellular electrophysiologic responses of isolated neonatal and adult cardiac fibers to d-sotalol. J Am Coll Cardiol 11: 1094–1099

    Article  PubMed  CAS  Google Scholar 

  124. You-Qui X, Pickoff AS, Clarkson CW (1989) Evidence for differences in phenytoin block of Na+ channels in adult vs neonatal rat myocytes. Circulation 80 (Suppl II): 606 (abstract)X

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gow, R.M., Hamilton, R.M. (1992). Developmental Biology of Specialized Conduction Tissue. In: Neonatal Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-1814-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1814-5_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1816-9

  • Online ISBN: 978-1-4471-1814-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics