Skip to main content

The Measurement of Bone Density

  • Conference paper
  • 89 Accesses

Abstract

The increasing awareness of the problem of osteoporosis has been prompted by a combination of demographic changes, advances in technology and the realisation that this is an eminently preventable condition. Osteoporosis can be defined as a reduction in the mass of bone per unit volume throughout the skeleton leading to risk of fracture following minimal trauma. This condition predominantly affects older women and is associated with significant morbidity and mortality. The increasing prevalence of osteoporosis [1,2] imposes a heavy and growing financial burden on the National Health Service. The average life expectancy of women in the UK is now 82 years and this has increased substantially since the 1930s when women could expect to reach 60 years. With menopausal age remaining static at about 51 years, the woman of the 1990s will spend a far larger proportion of her lifespan in the postmenopausal era than her predecessors, and consequently, postmenopausal complications will achieve more importance to both doctor and patient alike.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Royal College of Physicians Report. Fractured neck of femur-prevention and management. London RCP, 1989.

    Google Scholar 

  2. Bengner U, Johnell O, Redlund-Johnell I. Changing incidence and prevalence of vertebral fractures during 30 years. Calcif Tiss Int 1988; 42; 293–6.

    Article  CAS  Google Scholar 

  3. Bartely MH, Arnold JS, Haslam RK, Webster SSJ. The relationship of bone strength and bone quantity in health, disease and ageing. J Gerontol 1966; 21:517–21.

    Google Scholar 

  4. Ross PD, Wasnich RD, Vogel JM. Detection of prefracture spinal osteoporosis using bone mineral absorptiometry. J Bone Miner Res 1988; 3:1–11.

    Article  PubMed  CAS  Google Scholar 

  5. Mazess RB, Wahner HM. Nuclear medicine and densitometry In: Riggs BL, Melton III JL, eds. Osteoporosis: etiology, diagnosis and management. New York: Raven Press, 1988; 251–95.

    Google Scholar 

  6. Murby B, Fogelman I. Bone mineral measurements in clinical practice. Br J Hosp Med 1987; May:453–8.

    Google Scholar 

  7. Mazess RB. Noninvasive bone measurements. In: Kunin A, ed. Skeletal research II. New York: Academic Press, 1983; 277–343.

    Google Scholar 

  8. Vogt FB, Meharg LS, Mack PB. Use of a digital computer in the measurement of roentgeno-graphic bone density. AJR 1969; 105:870.

    CAS  Google Scholar 

  9. Schaadt O, Bohr H. Skeletal metabolism. Lancet 1980; ii:914.

    Article  Google Scholar 

  10. Horsman A, Burkinshaw L, Pearson D, Oxby CB, Milner RM. Estimating total body calcium from peripheral bone measurements. Calcif Tiss Int 1983; 35:135–44.

    Article  CAS  Google Scholar 

  11. Cann CE, Gennant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 1980; 4:493–500.

    Article  PubMed  CAS  Google Scholar 

  12. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 1977; 12:545–51.

    Article  PubMed  CAS  Google Scholar 

  13. Richardson ML, Genant HK, Cann CE, Ettinger BE. Assessment of metabolic bone diseases by quantitative computerized tomography. Clin Orthop 1985; 185:224–38.

    Google Scholar 

  14. Genant HK, Cann CE, Pozzi-Mucelli RS, Kanter AS. Vertebral mineral determination by quantitative CT: clinical and visability and normative data. J Comput Assist Tomogr 1983; 7:554.

    Article  Google Scholar 

  15. Graves VB, Wimmer R. Long term reproducibility of quantitative computed tomography for vertebral mineral measurements. J Comput Assist Tomogr 1985; 9:73–6.

    Article  CAS  Google Scholar 

  16. Ruegsegger P, Dambacher M. Clinical application of peripheral computed tomography. Excerpt Med Int Congr Ser 1983; 617:48–51.

    Google Scholar 

  17. Cameron JR, Sorenson J. Measurement of bone mineral in vivo: an improved method. Science 1963; 142:230–2.

    Article  PubMed  CAS  Google Scholar 

  18. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol 1985; 153:745–51.

    PubMed  CAS  Google Scholar 

  19. Sorenson JA, Cameron JR. A reliable in vivo measurment of bone mineral content. J Bone Jt Surg 1967; 49A:481–97.

    CAS  Google Scholar 

  20. Cameron JR, Mazess RB, Sorenson MS. Precision and accuracy of bone mineral determination by direct photon absorptiometry. Invest Radiol 1986; 3:141–50.

    Article  Google Scholar 

  21. Johnston CC Jr. Noninvasive methods of quantifying appendicular bone mass. In: Avioli LV, ed. The osteoporotic syndrome: detection, prevention and treatment. New York: Grune and Stratton, 1983; 73–83.

    Google Scholar 

  22. Mezess RB, Peppier WW, Chesney RW, Lange TA, Lindgren U, Smith E. Does bone density on the radius indicate skeletal status? J Nucl Med 1984; 25:281–8.

    Google Scholar 

  23. Wilson CR, Matson M. Dichromatic absorptiometry of vertebral bone mineral content. Invest Radiol 1977; 12:188–94.

    Article  Google Scholar 

  24. Rodin A, Murby B, Smith MA, Caleffi M, Fentiman I, Chapman MG, Fogelman I. Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 1990; 11:1–50.

    Article  PubMed  CAS  Google Scholar 

  25. Leblanc AD, Evans HJ, Marsh C, Schneider V, Johnson PC, Jhingran SG. Precision of dual photon absorptiometry measurements. J Nucl Med 1986; 27:1362–5.

    PubMed  CAS  Google Scholar 

  26. Tothill P, Smith MA, Sutton D. Dual photon absorptiometry of the spine with a low activity source of gadolinium 153. Br J Radiol 1983; 56:829–35.

    Article  PubMed  CAS  Google Scholar 

  27. Schaadt O, Bohr H. Bone mineral by dual photon absorptiometry. Accuracy-precision-sites of measurements. In: Dequeker J, Johnston CC, eds. Non-invasive bone measurements. Oxford: IRL Press, 1981; 59–72.

    Google Scholar 

  28. Pacifici R, Rupich R, Vered I, Fischer K, Griffin M, Susman N, Avioli LV. Dual energy radiography: a preliminary comparative study. Calcif Tiss Int 1988; 48:189–91.

    Article  Google Scholar 

  29. Sartoris DJ, Resnick D. Dual-energy radiographic absorptiometry for bone densitometry: current status and perspective. Am J Radiol 1989; 152:214–16.

    Google Scholar 

  30. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 1988; 67:839–44.

    Article  PubMed  CAS  Google Scholar 

  31. Mazess R, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tiss Int 1989; 44:228–32.

    Article  CAS  Google Scholar 

  32. Sambrook PN, Eisman JA, Furier SM, Pocock NA. Computer modelling and analysis of cross sectional bone density studies with respect to age and the menopause. J Bone Miner Res 1987; 2:109–14.

    Article  PubMed  CAS  Google Scholar 

  33. Rickers H, Deding A, Christiansen C, Rodbro P, Naestoft J. Corticosteroid induced osteopenia and vitamin D metabolism. Clin Endocrinol 1982; 16:409–15.

    Article  CAS  Google Scholar 

  34. Cohn SH, Vaswani A, Zanzi I, Ellis KJ. Effect of aging on bone mass in adult women. Am J Physiol 1976; 230:143.

    PubMed  CAS  Google Scholar 

  35. Smith DM, Khairi MRA, Norton J, Johnston CC. Age and activity effects on rate of bone mineral loss. J Clin Invest 1976; 58:716.

    Article  PubMed  CAS  Google Scholar 

  36. Aloia JF, Vaswani A, Ellis K, Yuen K, Cohn SH. A model for involutional bone loss. J Lab Clin Med 1985; 106:630–7.

    PubMed  CAS  Google Scholar 

  37. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP. Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 1981; 67:328–35.

    Article  PubMed  CAS  Google Scholar 

  38. Krolner B, Pors-Nielsen S. Bone mineral content of the lumbar spine in normal and osteoporotic women. Clin Sci 1982; 62:329–36.

    PubMed  CAS  Google Scholar 

  39. Hansson T, Roos B. Age changes in the bone mineral of the lumbar spine in normal women. Calcif Tiss Int 1986; 38:249–51.

    Article  CAS  Google Scholar 

  40. Mazess RB, Barden HS, Ettinger M et al. Spine and femur density using dual photon absorptiometry in US white women. Bone Mineral 1987; 2:211–19.

    CAS  Google Scholar 

  41. Lindsay R, Hart DM, MacLean A, Garwood J, Aitken JM, Clark AC, Coutts JRT. Pathogenesis and prevention of postmenopausal osteoporosis. In: Cooke ID, ed. The role of oestrogen/progestogen in the management of the menopause. Lancaster: MTP, 1978;9–27.

    Google Scholar 

  42. Nordin BEC, Polley KJ. Metabolic consequences of the menopause. Calcif Tiss Int 1987; 41s:1–60.

    Google Scholar 

  43. Johnston CC Jr, Norton JA Jr, Khairi RA et al. Age-related bone loss. In: Barzel US, ed. Osteoporosis II. Philadelphia: Grune and Stratton, 1979; 91–100.

    Google Scholar 

  44. Riggs BL, Wahner HW, Melton JL III, Richelson LS, Judd HL, Offord KP. Rates of bone loss in the appendicular and axial skeletons of women. J Clin Invest 1986; 77:1487–91.

    Article  PubMed  CAS  Google Scholar 

  45. Elders PJM, Coen Netelenbos J, Lips P, van Ginkel FC, van der Stelt PF. Accelerated vertebral bone loss in relation to the menopause: a cross sectional study on lumbar bone density in 286 women of 46–55 years of age. Bone Mineral 1988; 5:11–19.

    Article  CAS  Google Scholar 

  46. Genant HK, Cann CE, Ettinger B, Gordan GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method of detecting early bone loss after oophorectomy. Ann Intern Med 1982; 97:699–705.

    PubMed  CAS  Google Scholar 

  47. Nilas L, Christiansen C. The pathophysiology of peri- and postmenopausal bone loss. Br J Obstet Gynaecol 1989; 96:580–7.

    Article  PubMed  CAS  Google Scholar 

  48. Komm BS, Sheetz L, Baker M, Gallegos A, O’Malley BW, Haussier MR. J Bone Miner Res 1987;2:Abstract 237 S1.

    Google Scholar 

  49. Eriksen EF, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. J Bone Miner Res 1987;2:Abstract238Sl.

    Google Scholar 

  50. Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH FSH estradiol and progesterone concentrations during menstrual cycles of older women. Clin Endocrinol Metab 1976; 42:629–36.

    Article  CAS  Google Scholar 

  51. Johnston CC Jr, Hui SL, Witt RM, Appledorn R, Baker RS, Longcope C. Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 1985; 61:905–11.

    Article  PubMed  CAS  Google Scholar 

  52. Seeman E, Cooper ME, Hopper JL, Parkinson E, McKay J, Jerums G. Effect of early menopause on bone mass in normal women and patients with osteoporosis. Am J Med 1988; 85:213–16.

    Article  PubMed  CAS  Google Scholar 

  53. Richelson LS, Wahner HW, Melton LJ III et al. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 1943; 11:1273–5.

    Google Scholar 

  54. Riggs BL, Melton LJ III. Involutional osteoporosis. N Engl J Med 1986; 314:1676–86.

    Article  PubMed  CAS  Google Scholar 

  55. Nordin BEC. The osteoporosis agenda: what we do not know? In: Christiansen C et al., eds. Osteoporosis. Proceedings of the international symposium on osteoporosis. Norhaven A/S Denmark, 1987; 23–30.

    Google Scholar 

  56. Nilas L, Christiansen C. Bone mass and its relationship to age and the menopause. J Clin Endocrinol Metab 1987; 65:697–702.

    Article  PubMed  CAS  Google Scholar 

  57. Gardsell P, Johnell O, Nilsson BE. Predicting fractures in women using forearm bone densitometry. Calcif Tiss Int 1989; 44:235–42.

    Article  CAS  Google Scholar 

  58. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM. Selection of the optimal skeletal site for fracture risk prediction. Clin Orthop 1987; 216:262–9.

    PubMed  Google Scholar 

  59. Melton LJ, Wahner HW, Richelson LS, O’Fallon WM, Riggs BL. Osteoporosis and the risk of hip fracture. Am J Epidemiol 1986; 124:254–61.

    PubMed  Google Scholar 

  60. Hui SL, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81:1804–9.

    Article  PubMed  CAS  Google Scholar 

  61. Jensen GF, Christiansen C, Boesen J, Hegedus V, Transbol I. Relationship between bone mineral content and frequency of postmenopausal fractures. Acta Med Scand 1983; 213:61–3.

    Article  PubMed  CAS  Google Scholar 

  62. Smith DM, Khairi MRA, Johnston CC. The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Invest 1975; 56:311–18.

    Article  PubMed  CAS  Google Scholar 

  63. Wasnich RD, Ross PD, Davis JW, Vogel JM. A comparison of single and multi-site BMC measurements for assessment of spine fracture probability. J Nucl Med 1989; 30:1166–71.

    PubMed  CAS  Google Scholar 

  64. Price RI, Barnes MP, Gutteridge DH, Baron-Hay M, Prince RL, Retallack RW, Hickling C. Ultradistal and cortical forearm bone density in the assessment of post menopausal bone loss and non-axial fracture risk. J Bone Miner Res 1989; 4:149–55.

    Article  PubMed  CAS  Google Scholar 

  65. Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC. Long-term prevention of postmenopausal osteoporosis by oestrogen. Lancet 1976; i:1038–41.

    Article  Google Scholar 

  66. Savvas M, Studd JWW, Fogelman I, Dooley M, Montgomery J, Murby B. Skeletal effects of oral oestrogen compared with subcutaneous oestrogen and testosterone in postmenopausal women. Br Med J 1988; 297:331–3.

    Article  CAS  Google Scholar 

  67. Heaney RP, Creighton JA. Risk factors in age-related bone loss and osteoporotic fracture. In: Christiansen et al., eds. Osteoporosis. Proceedings of Copenhagen international symposium on osteoporosis. Aalborg Stiftsbogtrykkeri, Denmark 1984; 245–51.

    Google Scholar 

  68. Christiansen C, Riis BJ, Rodbro P. Prediction of rapid bone loss in postmenopausal women. Lancet 1987; i:1105–8.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this paper

Cite this paper

Fogelman, I., Rodin, A. (1990). The Measurement of Bone Density. In: Drife, J.O., Studd, J.W.W. (eds) HRT and Osteoporosis. Springer, London. https://doi.org/10.1007/978-1-4471-1799-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1799-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1801-5

  • Online ISBN: 978-1-4471-1799-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics