Skip to main content

Abstract

The numerical analysis of problems in forming can be accomplished by a variety of techniques; one has finite differences, finite elements, boundary elements, and other methods. Each method has some advantage over the others in certain classes of problems, and here we review the use of boundary-element methods in some slow Newtonian and non-Newtonian (or rheological) forming problems. The term non-Newtonian fluid means a material not described by the Navier-Stokes equations. The simplest non-Newtonian fluid class includes materials where the viscosity depends on the scalar invariants of the rate-of-deformation tensor D. In some cases metal deformation can be so modelled (Karabin and Smelser 1989). A much greater challenge is posed by fluids with memory (or viscoelasticity) and part of this chapter is devoted to this category of materials; molten plastics are perhaps the most important examples of viscoelastic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science. McGraw-Hill, London

    MATH  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bézine G, Bonneau D (1981) Integral equation method for the study of two dimensional stokes flows. Acta Mech 41:197–209

    Article  MATH  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O. (1987) Dynamics of polymeric liquids, vol. I. Fluid Mechanics, 2nd edn. John Wiley, New York

    Google Scholar 

  • Brebbia CA (1980) The boundary element method for engineers. Pentech Press, London

    Google Scholar 

  • Bush MB (1987) Boundary element simulation of polymer extrusion processes. Engng Analysis 4:7–14

    Article  Google Scholar 

  • Bush MB, Phan-Thien N (1985) Three dimensional viscous flows with a free surface: flow out of a long square die. J Non-Newt Fluid Mech 18:211–218

    Article  MATH  Google Scholar 

  • Bush MB, Tanner RI (1983) Numerical solution of viscous flows using integral equation methods. Int J Num Meth Fluids 3:71–92

    Article  MATH  Google Scholar 

  • Bush MB, Milthorpe JF, Tanner RI (1984) Finite element and boundary element methods for extrusion computations. J Non-Newt Fluid Mech 16:37–51

    Article  MATH  Google Scholar 

  • Bush MB, Tanner RI, Phan-Thien N (1985) A boundary element investigation of extrudate swell. J Non-Newt Fluid Mech 18:143–162

    Article  MATH  Google Scholar 

  • Coleman CJ (1981) A contour integral formulation of plane creeping Newtonian flow. Q J Mech Appl Math 34:453–464

    Article  MATH  Google Scholar 

  • Coleman CJ (1984) On the use of boundary integral methods in the analysis of non-Newtonian fluid flow. J Non-Newt Fluid Mech 16:347–355

    Article  MATH  Google Scholar 

  • Crochet MJ, Keunings R (1982) J Non-Newt Fluid Mech 10:339–356

    Article  MATH  Google Scholar 

  • Cruse TA (1969) Numerical solution in three-dimensional elastostatics. Int J Solids Struct 5:1265–1274

    Article  Google Scholar 

  • Cruse TA, Snow DW, Wilson RB (1974) Numerical solutions in axisymmetric elasticity. Com put Struct 7:445–451

    Article  MathSciNet  Google Scholar 

  • Danson DJ (1981) Boundary element methods, Brebbia CA (ed), Springer-Verlag, Berlin

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. John Wiley, New York

    Google Scholar 

  • Karabin ME, Smelser RE (1989) The boundary element in three-dimensional forging. In: Thompson EG, Wood RD, Zienkiewicz OC, Samuelsson A, (eds) Numiform 89. Balkema, Rotterdam, pp 555–562

    Google Scholar 

  • Kelmanson MA (1983) An integral equation method for the solution of singular slow flow problems. J Comput Phys 51:307–324

    Article  Google Scholar 

  • Kermanidis T (1975) A numerical solution for axially symmetrical elasticity problems. Int J Solids Struct 11:493–500

    Article  MATH  Google Scholar 

  • Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York

    MATH  Google Scholar 

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, Boston

    Google Scholar 

  • Laun HM, Munstedt H (1978) Elongational behaviour of a low density polyethylene melt. Rheol Acta 17:415–425

    Article  Google Scholar 

  • Leonov AI (1976) Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta 15:85–98

    Article  MATH  Google Scholar 

  • Luo X-L, Tanner RI (1986) A streamline element scheme for solving viscoelastic flow problems. Part II: integral constitutive models. J Non-Newt Fluid Mech 22:61–89

    Article  MATH  Google Scholar 

  • Luo X-L, Tanner RI (1988) Finite element simulation of long and short circular die extrusion experiments using integral models, Int J Num Meth Engng 25:9–22

    Article  MATH  Google Scholar 

  • Meissner J (1975) Basic parameters, melt rheology, processing and end use properties of three similar low density polyethylene samples. Pure Appl Chern 42:553–612

    Google Scholar 

  • Michaeli W (1984) Extrusion die design. Hanser, Munich

    Google Scholar 

  • Onishi K, Kuroki T, Tanaka M (1984) An application of boundary element method to incompressible laminar viscous flows. Engng Analysis 1: 122–127

    Article  Google Scholar 

  • Onishi K, Kuroki T, Tanaka M (1985) Topics in boundary element research, vol. 2. Brebbia CA (ed), Springer-Verlag, Berlin

    Google Scholar 

  • Ph an-Thien N (1988) Influence of wall slip on extrudate swell: a boundary element investigation. J Non-Newt Fluid Mech 26:327–340

    Article  MATH  Google Scholar 

  • Phan-Thien N, Tanner RI (1977) A new constitutive equation derived from network theory. J Non-Newt Fluid Mech 2:353–365

    Article  Google Scholar 

  • Phuoc HB, Tanner RI (1980) Thermally induced extrudate swell. J Fluid Mech 98:253–271

    Article  MATH  Google Scholar 

  • Rizzo FJ (1967) An integral equation approach to boundary value problems in classical elastostatics, QJ Appl Math 25:83–95

    MATH  Google Scholar 

  • Skerget P, Alujevic A (1985) The solution of the Navier-Stokes equations in terms of vorticity-velocity variables by the boundary element method. Z Angew Math Mech 65:T245–T248

    Google Scholar 

  • Sugeng F, Phan-Thien N, Tanner RI (1987) A study of non-isothermal non-Newtonian extrudate swell by a mixed boundary element and finite element method. J Rheol 31:37–58

    Article  Google Scholar 

  • Sugeng F, Phan-Thien N, Tanner RI (1988) A boundary element investigation of the pressure-hole effect. J Rheol 32:215–234

    Article  Google Scholar 

  • Tanner RI (1988) Engineering rheology, revised ed. Oxford University Press

    MATH  Google Scholar 

  • Tasaka N, Onishi K (1985) Boundary integral equation formulations for steady Navier-Stokes equations using the Stokes fundamental solutions. Engng Analysis 2: 128–132

    Article  Google Scholar 

  • Tran-Cong T, Phan-Thien N (1988a) Three dimensional study of extrusion processes by boundary element method. Part I. An implementation of high order elements and some Newtonian results. Rheol Acta 27:21–30

    Article  Google Scholar 

  • Tran-Cong T, Phan-Thien N (1988b) Three dimensional study of extrusion processes by boundary element method. Part II. Some non-Newtonian results. Rheol Acta 27:639–648

    Article  Google Scholar 

  • Walters K (1975) Rheometry. Chapman and Hall, London

    Google Scholar 

  • Wu JC, Rizk YM (1979) Lecture notes in physics 90. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Youngren GK, Acrivos A (1975) Stokes flow past a particle of arbitrary shape: a numerical method of solution. J Fluid Mech 69:377–403

    Article  MATH  MathSciNet  Google Scholar 

  • Zheng R, Tanner RI (1988) A numerical analysis of calendering. J Non-Newt Fluid Mech 28:149–170

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Phan-Thien, N., Tanner, R.I. (1992). Boundary-Element Analysis of Forming Processes. In: Hartley, P., Pillinger, I., Sturgess, C. (eds) Numerical Modelling of Material Deformation Processes. Springer, London. https://doi.org/10.1007/978-1-4471-1745-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1745-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1747-6

  • Online ISBN: 978-1-4471-1745-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics