Skip to main content

Abstract

Beginning with the introduction of boron fibre-reinforced aluminium, metal matrix composites have been used extensively, and research in the area has increased rapidly in recent years. Metal matrix composites exhibit high specific strength (strength-to-weight ratio) and high specific modulus, in addition to a service temperature capability much higher than that of polymer matrix composites. In addition, they are excellent thermal conductors. Potentially, the ductility and good environmental resistance of metallic matrices can result in superior composite material products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DF (1970) Inelastic analysis of a unidirectional composite subject to transverse normal loading. J Comp Mater 4:310–328

    Article  Google Scholar 

  • Adams DF (1987) A micromechanics analysis of the influence of the interface on the performance of polymer-matrix composites. J Reinf Plast Comp 6:66–88

    Article  Google Scholar 

  • Adams DF, Crane DA (1984) Combined loading micromechanical analysis of a unidirectional composite. Composites 15 (3):181–191.

    Article  Google Scholar 

  • Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Comp Mater 1:152–164

    Article  Google Scholar 

  • Adams DF, Miller AK (1977) Hygrothermal microstresses in a unidirectional composite exhibiting inelastic material behavior. J Comp Mater 11:285–299

    Article  Google Scholar 

  • Argon AS, Im J, Safoglu R (1975) Cavity formation from inclusions in ductile fracture. Met Trans A 6:825–837

    Article  Google Scholar 

  • Bahei-EI-Din YA (1979) Plastic analysis of metal-matrix composite laminates. PhD dissertation, Duke University, South Carolina

    Google Scholar 

  • Bahei-EI-Din Y A, Dvorak GJ (1979) Plastic yielding at a circular hole in a laminated FP-AI plate. In: Modern developments in composite materials and structures. American Society of Mechanical Engineers, New York, pp 123–147

    Google Scholar 

  • Chen CC, Kobayashi S (1978) Rigid-plastic finite element analysis of ring compression. In: Application of numerical methods to forming processes, vol AMD-28, American Society of Mechanical Engineers, New York

    Google Scholar 

  • Dvorak GJ, Bahei-EI-Din Y A (1979) Elastic-plastic behavior of fibrous composites. J Mech Phys Solids 27:51–72

    Article  MATH  Google Scholar 

  • Dvorak GJ, Rao MSM, Tarn JQ (1974) Generalized initial yield surfaces for unidirectional composites. Trans ASME: J Appl Mech 41:249–253

    Article  Google Scholar 

  • Erturk T, Kuhn HA (1979) Use of forming criteria in forging complex shapes from metal-matrix composites. Trans ASME: J Eng Mat Tech 101:3–11

    Article  Google Scholar 

  • Erturk T, Kuhn HA, Lawley A (1974) Forging of metal-matrix composites - forming criteria. Met Trans A 5:2295–2303

    Article  Google Scholar 

  • Getten JR, Ebert LJ (1969) The cold rolling characteristics of aluminum-boron fiber composites. Trans ASM 62:869–878

    Google Scholar 

  • Hill R (1950) Mathematical theory of plasticity. Oxford University Press, London

    MATH  Google Scholar 

  • Hung C (1990) Process design of three-dimensional open-die forging and the deformation analysis of metal matrix composites. PhD dissertation, University of California, Berkeley

    Google Scholar 

  • Hwang SM, Kobayashi S (1984) Preform design in plane strain rolling by the finite-element method. Int J Mach Tool Des Res 24 (4):253–266

    Article  Google Scholar 

  • Hwang SM, Kobayashi S (1986) Preform design in disk forging. Int J Mach Tool Des Res 26 (3):231–243

    Article  Google Scholar 

  • Im KH (1990) Forming criteria for metal matrix composites. PhD dissertation, University of California, Berkeley

    Google Scholar 

  • Im KH, Dharan CKH (1990) Forming criteria based on fiber-matrix interfacial strength for metal matrix composites. Submitted for publication

    Google Scholar 

  • Kim NS (1989) Computer-aided preform design in metal forming by the finite element method. PhD dissertation, University of California, Berkeley

    Google Scholar 

  • Lee CH, Kobayashi S (1973) New solutions to rigid-plastiC deformation problems using a matrix method. Trans ASME: J Eng Ind 95 (3):865–873

    Article  Google Scholar 

  • Mori K, Osakada K (1984) Simulation of three-dimensional deformation in rolling by the finiteelement method. Int J Mech Sci 26 (9/10):515–525

    Article  MATH  Google Scholar 

  • Oh SI (1982) Finite element analysis of a metal forming process with arbitrary shaped dies. Int J Mech Sci 24 (8):479–493

    Article  MATH  Google Scholar 

  • Park JJ, Kobayashi S (1984) Three-dimensional finite-element analysis of block compression. Int J Mech Sci 26 (3):165–176

    Article  MATH  Google Scholar 

  • Park JJ, Rebelo N, Kobayashi S (1983) A new approach to preform design in metal forming with the finite element method. Int J Mach Tool Des Res 23 (1):71–79

    Article  Google Scholar 

  • Salkind M, George F, Tice W (1969) Some effects of cold rolling on the microstructure and properties of AI3Ni whisker reinforced aluminum. Trans Met Soc AIME 245:2339–2345

    Google Scholar 

  • Shah SN, Kobayashi S (1974) Rigid-plastic analysis of cold heading by the matrix method. In: Tobias SA, Koenigsberger K (eds) Proceedings 15th International Machine Tool Design Research Conference pp. 561–569

    Google Scholar 

  • Shiau YC (1987) Three-dimensional finite element analyses of open-die forging and plate rolling. PhD Dissertation, University of California, Berkeley

    Google Scholar 

  • Taylor RL (1989) FEAP - finite element analysis program manual. University of California, Berkeley

    Google Scholar 

  • Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by finite-element method. Int J Mech Sci 10:343–354

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited Printed in Germany

About this chapter

Cite this chapter

Dharan, C.K.H., Kobayashi, S. (1992). Forming of Metal Matrix Composites. In: Hartley, P., Pillinger, I., Sturgess, C. (eds) Numerical Modelling of Material Deformation Processes. Springer, London. https://doi.org/10.1007/978-1-4471-1745-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1745-2_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1747-6

  • Online ISBN: 978-1-4471-1745-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics