Quantitative Computed Tomography (QCT)

  • J. E. Adams


Bone is a specialized form of connective tissue made up of organic (24%) and inorganic (76%) components. The organic component, or osteoid, is a collagen matrix containing non-collagenous proteins, and the inorganic or mineral component consists principally of calcium hydroxyapatite crystals. The adult skeleton is composed of two types of bone, compact bone (80%) and trabecular bone (20%). Compact bone forms the cortex of the bones and is found mainly in the shafts of the long bones. Trabecular or cancellous bone is found mainly in the bones of the axial skeleton (vertebral bodies and pelvis) and in the metaphyseal regions of long bones (proximal femur, distal radius).


Bone Mass Trabecular Bone Bone Mineral Content Quantitative Compute Tomography Dual Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JE, Chen SZ, Adams PH, Isherwood I (1982) Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr 6:601–607PubMedCrossRefGoogle Scholar
  2. Adams PH, Davies GT, Sweetnam PM (1969) Observer error and measurements of the metacarpal. Br J Radiol 42: 192–197PubMedCrossRefGoogle Scholar
  3. Arnold BA (1987) Automated Software and Phantom improve- ments for bone mineral analysis by quantitative computed tomography. In:Genant HK (ed) Osteoporosis update. Radiology Research and Education Foundation, San Francisco, California, pp 197–202Google Scholar
  4. Cameron JR, Mazess RB, Sorenson JA (1968) Precision and accuracy of bone mineral determination by direct photon absorptiometry. Invest Radiol 3: 141–150PubMedCrossRefGoogle Scholar
  5. Cann CE (1981) Low dose CT scanning for quantitative spinal mineral analysis. Radiology 140: 813–815PubMedGoogle Scholar
  6. Cann CE (1987a) Quantitative CT applications: comparison of current scanners. Radiology 162: 2 57–261Google Scholar
  7. Cann CE (1987b) Quantitative computed tomography for bone mineral analysis: technical considerations. In Genant HK (ed) Osteoporosis update. Radiology Research and Education Foundation, San Francisco, California, pp 131–144Google Scholar
  8. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4: 493–500PubMedCrossRefGoogle Scholar
  9. Cann CE, Martin MC, Genant HK, Jaffe RB (1984) Decreased spinal mineral content in amenorrheic women. JAMA 251: 626–629PubMedCrossRefGoogle Scholar
  10. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Metab Bone Dis Rel Res 6: 1–7Google Scholar
  11. Cann CE, Henzl M, Burry K et al. (1987) Reversible bone loss by GnRH agonist Nafarelin. In: Cohn DV, Martin TJ, Meunier PJ (eds) Calcium regulation and bone metabolism: basic and clinical aspeets Vol 9, pp 123–127Google Scholar
  12. Cohn SH, Dombrowski CS (1971) Measurement of total body calcium, sodium, chlorine, nitrogen and phosphoras in man by in vivo neutron activation analysis. J Nucl Med 12: 499–505PubMedGoogle Scholar
  13. Compston JE, Evans WD, Crawley EO, Evans C (1988) Bone mineral content in normal UK subjects. Br J Radiol 61: 631–636PubMedCrossRefGoogle Scholar
  14. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7: 178–208PubMedGoogle Scholar
  15. Dickerson JWT (1962) Changes in the composition of the human femur during growth. Biochem J 82: 56–61PubMedGoogle Scholar
  16. Dickie DL, Flynne MJ, Goldstein SA, Ge F (1987) The invitro multivariate correlation of vertebral regional bone mineral density measurements and compressive strength. In: Book of Abstracts of Sixth International Workshop on Bone and Soft Tissue Densitometry, 22–25 September 1987, Buxton, England, p 47Google Scholar
  17. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative his- tological studies on age changes in bone. J Pathol Bacteriol 94: 275–291PubMedCrossRefGoogle Scholar
  18. Ettinger B, Genant HK, Cann CE (1985) Long term estrogen replacement therapy prevents bone loss and fractures. Ann Int Med 102: 319–324PubMedGoogle Scholar
  19. Ettinger B, Genant HK, Cann CE (1987) Postmenopausal bone loss is prevented by treatment with low-dose oestrogen with calcium. Ann Int Med 106: 40–45PubMedGoogle Scholar
  20. Firooznia H, Rali M, Golimbu C, Schwartz MS, Ort P (1986) Trabecular mineral content of the spine in women with hip fracture: CT measurement. Radiology 159: 737–740PubMedGoogle Scholar
  21. Fraser RG, Hickey NM, Niklason LT et al. (1986) Calcification in pulmonary nodules: detection with dual energy digital radiography. Radiology 160: 595–601PubMedGoogle Scholar
  22. Frost HM (1973) The origin and nature of transients in human bone remodelling dynamics. In: Frame B, Parfitt AM, Duncan H (eds) Clinical aspeets of metabolic bone disease. Excerpta Medica, Amsterdam, pp 124–137Google Scholar
  23. Gallagher C, Goldgar D, Mahoney P, McGill J (1985) Measurement of spine density in normal and osteoporotic subjects using computed tomography: relationship of spine density to fracture threshold and fracture index. J Comp Assist Tomogr 9: 634–635CrossRefGoogle Scholar
  24. Garn SM (1970) The earlier gain and later loss of cortical bone. Nutritional perspectives. CC Thomas, Springfield, Illinois, pp 146Google Scholar
  25. Genant HK (1985) Assessing osteoporosis: CT’s quantitative advantage. Diagnostic Imaging 8: 52–57Google Scholar
  26. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12: 545–551PubMedCrossRefGoogle Scholar
  27. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Int Med 97: 699–705PubMedGoogle Scholar
  28. Genant HK, Block JE, Steiger P, Gluer CC (1987) Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK (ed) Osteoporosis update. Radiology Research and Education Foundation, San Francisco, California, pp 49–71Google Scholar
  29. Hall FM (1987) Bone-mineral Screening for osteoporosis. AJR 149: 120–122PubMedGoogle Scholar
  30. Hangartner TN, Overton TR (1982) Quantitative measurement of bone density using gamma-ray computed tomography. J Comp Assist Tomogr 6: 1156–1162CrossRefGoogle Scholar
  31. Horsman A, Jones M, Frances R, Nordin C (1983) The effect of oestrogen dose on postmenopausal bone loss. N Engl J Med 309: 1405–1407PubMedCrossRefGoogle Scholar
  32. Hosie CJ, Smith DAS (1986) Precision of measurement of bone density with a special purpose computed tomography Scanner. BrJ Radiol 59: 345–350CrossRefGoogle Scholar
  33. Hounsfield GM (1973) Computerised transverse axial scanning (tomography) I. Description of system. Br J Radiol 46: 1016–1022PubMedCrossRefGoogle Scholar
  34. Jensen PS, Orphanoudakis SC, Rauschkolb EN, Baron R, Lang R, Rasmussen H (1980) Assessment of bone mass in the radius by computed tomography. Am J Radiol 134: 285–292Google Scholar
  35. Lancet (Editorial) (1985) Risk factors in postmenopausal osteoporosis. 1: 1370–1372Google Scholar
  36. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13: 89–91PubMedCrossRefGoogle Scholar
  37. Laval-Jeantet AM, Cann CE, Roger BM, Dallant P (1984) A post- processing dual energy technique for vertebral CT densitoinetry. J Comput Assist Tomogr 9: 1164–1167CrossRefGoogle Scholar
  38. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Rone Joint Surg [Am] 67: 1206–1214Google Scholar
  39. MacDonald PC (1986) Estrogen plus progestin in post-menopausal women - act II. N Engl J Med 315: 959–961PubMedCrossRefGoogle Scholar
  40. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop 80: 147–154PubMedCrossRefGoogle Scholar
  41. Nordin BEC, Peacock M, Aaron J et al. (1980) Osteoporosis and mosteomalacia. Clin Endocrinol Metab 9: 177–205PubMedCrossRefGoogle Scholar
  42. Ott S (1986) Should women get Screening bone mass measure¬ments. (Editorial) Ann Intern Med 104: 874–876Google Scholar
  43. Peppler WW, Mazess RB (1981) Total body bone mineral and lean body mass by dual photon absorptiometry. I. Theory and measurement procedure. Calcif Tissue Int 33: 353–359PubMedCrossRefGoogle Scholar
  44. Posner I, Griffiths HJ (1977) Comparison of CT scanning with photon absorptiometric measurement ofbone mineral content in the appendicular skeleton. Invest Radiol 12: 542–544PubMedCrossRefGoogle Scholar
  45. Prudham G, Evans JG (1981) Factors associated with falls in the elderly: a Community study. Age Ageing 10:141–146PubMedGoogle Scholar
  46. Ray WA, Griffin MR, Schaffner W, Baugh DK, Melton LJ III (1987) Psychotropic drug use and the risk of hip fracture. N Engl JMed 316: 363–369CrossRefGoogle Scholar
  47. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early-postmenopausal and postmenopausal osteoporotie women: comparison of measurement methods. Radiology 160: 469–478PubMedGoogle Scholar
  48. Richardson ML, Genant HK, Cann CE et al. (1985) Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop 195: 224–238PubMedGoogle Scholar
  49. Riggs BL, Melton LJ HI (1986) Involutional osteoporosis. N Engl JMed 314: 1676–1686CrossRefGoogle Scholar
  50. Ritchings RT, Pullan BR (1979) A technique for simultaneous dual energy scanning: a technical note. J Comput Assist Tomogr 3:842–846PubMedGoogle Scholar
  51. Ruegsegger P, Anliker M, Dambacher M (1981) Quantification of trabecular bone with low dose computed tomography. J Comput Assist Tomogr 5: 384–390PubMedCrossRefGoogle Scholar
  52. Rutherford RA, Pullan BR, Isherwood I (1976) Calibration and response of an EMI Scanner. Neuroradiology 11: 7–13PubMedCrossRefGoogle Scholar
  53. Rutt B, Fenster A (1980) Split-filter computed tomography: a simple technique for dual energy scanning. J Comput Assist Tomogr 4: 501–509PubMedCrossRefGoogle Scholar
  54. Sartoris D, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assess-ment. Radiology 160: 707–712PubMedGoogle Scholar
  55. Sartoris DJ, Stein JA, Ramos E et al. (1987) Quantitative dual energy digital radiography of the spine: comparison to dual photon absorptiometry and quantitative computed tomo¬graphy. In: Book of Abstracts of Sixth International Workshop on Bone and Soft Tissue Densitometry, 22–25 September 1987, Buxton, England, p. 77Google Scholar
  56. Shukla SS, Leichter I, Karellas A, Craven JD, Greenfield MA (1986) Trabecular bone mineral density measurement in vivo: use of the ratio of coherent to compton-scattered photons in the calcaneus. Radiology 158:695–697PubMedGoogle Scholar
  57. Stevenson JC, Whitehead MI (1982) Postmenopausal osteoporosis. Br Med J 285: 585–588CrossRefGoogle Scholar
  58. Wallace WA (1983) The increasing incidence of fractures of the proximal femur: anorthopaedie epidemic. Lancet 1: 1413–1414PubMedCrossRefGoogle Scholar
  59. Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR (1980) Decreased risk of fractures of the hip and lower forearm with post menopausaluse of estrogen. NEngl J Med 303: 1195–1198CrossRefGoogle Scholar
  60. Williams G, Bydder GM, Kreel L (1980) The validity and use of computed tomography attenuation values. Br Med Bull 36:279–287PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. E. Adams

There are no affiliations available

Personalised recommendations