Skip to main content

Radionuclides and Genetic Risks

  • Conference paper
Radionuclides in the Food Chain

Part of the book series: ILSI Monographs ((ILSI MONOGRAPHS))

Abstract

Ionizing radiation from natural sources has always been part of the human environment, and that from artifical (man-made) sources, since the beginning of the twentieth century. The fact that exposure to ionizing radiation—irrespective of whether it is from external sources or from internally deposited radionuclides— increases the risk of incurring adverse health effects was dramatically brought to the attention of the public by the atomic bombing of Hiroshima and Nagasaki in 1945. Since then, considerable attention has been paid over the years to the levels and effects of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schull WJ, Neel JV, Otake M, Awa AA, Satoh C, Hamilton HB (1982) Hiroshima and Nagasaki. Three and a half decades of genetic screening. In: Sugimura T, Kondo S, Takebe H (eds) Environmental mutagens and carcinogens. Tokyo University Press, Tokyo, and AR Liss, New York, pp 687–700

    Google Scholar 

  2. Schull WJ, Neel JV, Otake M, Awa AA, Satoh C, Hamilton HB (1982) Hiroshima and Nagasaki. Three and a half decades of genetic screening. In: Sugimura T, Kondo S, Takebe H (eds) Environmental mutagens and carcinogens. Tokyo University Press, Tokyo, and AR Liss, New York, pp 687–700

    Google Scholar 

  3. Awa AA, Honda T, Neriishi S, Sofuni T, Shimba H, Ohtari K, Nakano M, Kodama Y, Itoh M, Hamilton HB (1987) Cytogenetic study of the offspring of atomic bomb survivors, Hiroshima and Nagasaki. In: Obe G, Basler A (eds) Cytogenetics, basic and applied aspects. Springer-Verlag, Berlin, pp 166–183

    Google Scholar 

  4. Searle AG (1983) Cytogenetic effects of incorporated radionuclides on mammalian germ cells. In: Ishihara T, Sasaki MS (eds) Radiation-induced chromosome damage in man. AR Liss Inc, New York, pp 347–367

    Google Scholar 

  5. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982), Ionizing radiation: sources and biological effects, 1982 Report to the General Assembly, with annexes. United Nations, New York

    Google Scholar 

  6. Butler HL, LeRoy JH (1965) Observations of biological half-life of tritium. Health Phys 11:283–285

    Article  PubMed  CAS  Google Scholar 

  7. Wylie KF, Bigler WA, Grove GR (1963) Biological half-life of tritium. Health Phys 9:911–914

    Article  PubMed  CAS  Google Scholar 

  8. World Health Organization (WHO) (1983) Selected radionuclides, IPCS International Programme on Chemical Safety. Environmental Health Criteria 25, WHO Geneva

    Google Scholar 

  9. International Commission on Radiological Protection (ICRP) (1979) Limits for intakes of radionuclides by workers. ICRP Publication 30, Part 1, Ann ICRP 2, No 3/4, Pergamon, Oxford, UK

    Google Scholar 

  10. International Commission on Radiological Protection (ICRP) (1986) The metabolism of plutonium and related elements. ICRP Publication 48, Ann ICRP 16, No 2/3, Pergamon, Oxford

    Google Scholar 

  11. Van den Hoek J, Kirchmann R, Juan NB (1979) Transfer and incorporation of tritium in mammals. In: Behaviour of tritium in the environment. IAEA Vienna, pp 433–444

    Google Scholar 

  12. Cumming RB, Sega GA, Walton MF (1979) Radiation dosimetry in experimental animals exposed to tritiated water under different conditions. In: Behaviour of tritium in the environment, IAEA, Vienna, pp 463–468

    Google Scholar 

  13. Mian TA, Meistrich ML, Hayne TP, Glenn HJ (1981) Testicular radiation dose and cytotoxic effects of 32P. Radiat Res 87:445 (Abstract)

    Google Scholar 

  14. Brooks AL, Redman HC, Hahn FF, Mewhinney JA, Smith JM, McClellan RO (1983) The retention, distribution, dose and cytogenetic effects of inhaled 239Pu02 or 239Pu(N03)4 in non-human primates. In: Broerse JJ, Barendsen GW, Kal HB, Van der Kogel AJ (eds) Proc VII Int Cong Rad Res, session B (Biology) p B4-04 (Abstract)

    Google Scholar 

  15. Ash P, Parker T (1978) The ultrastructure of mouse testicular interstitial tissue containing plutonium-239 and its significance in explaining the observed distribution of plutonium in the testis. Int J Rad Biol 34:523–536

    Article  CAS  Google Scholar 

  16. Brooks AL, Diel JH, McClellan RO (1979) The influence of testicular micro-anatomy on the potential genetic dose from internally-deposited 239Pu citrate in Chinese hamster, mouse and man. Radiat Res 77:292–302

    Article  PubMed  CAS  Google Scholar 

  17. Green D, Howells GR, Humphreys ER, Vennart J (1975) Localization of plutonium in mouse testes. Nature (London) 255:77

    Article  CAS  Google Scholar 

  18. Miller SC (1982) Localization of plutonium-241 in the testis. An inter-species comparison using light and electron microscope autoradiography. Int J Rad Biol 41:633–643

    Article  CAS  Google Scholar 

  19. Miller SC, Bowman BM (1983) Tissue, cellular and subcellular distribution of 241Pu in the rat testis. Radiat Res 94:416–426

    Article  PubMed  CAS  Google Scholar 

  20. Russell JJ, Lindenbaum A (1979) One-year study of non-uniformly distributed plutonium in mouse testis as related to spermatogonial irradiation. Health Phys 36:153–157

    Article  PubMed  CAS  Google Scholar 

  21. Priest ND, Jackson S (1978) The uptake and redistribution of 241Pu within the gonads. Int J Radiat Biol 34:49–65

    Article  CAS  Google Scholar 

  22. Taylor DM (1977) The uptake, retention and distribution of plutonium-239 in rat gonads. Health Phys 32:29–31

    PubMed  CAS  Google Scholar 

  23. Miller SC, Rowland HG, Bowman BM (1985) Distributions of cell populations within alpha-particle range of plutonium deposits in the rat and beagle testis. Radiat Res 101:102–110

    Article  PubMed  CAS  Google Scholar 

  24. Clark RV (1976) Three-dimensional organization of testicular interstitial tissue and lymphatic space in the rat. Anat Rec 184:203–225

    Article  PubMed  CAS  Google Scholar 

  25. Connell CJ, Christensen AK (1975) The ultrastructure of the canine testicular interstitial tissue. Biol Reproc 12:368–382

    Article  CAS  Google Scholar 

  26. Fawcett DW, Burgos MH (1960) Studies on the fine structure of the mammalian testis. II The human interstitial tissue. Am J Anat 107:245–269

    Article  Google Scholar 

  27. Fawcett DW, Neaves WB, Flores MN (1973) Comparative observations on intertubu-lar lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500–532

    PubMed  CAS  Google Scholar 

  28. Kerr JB, de Kretser DM (1981) The cytology of the human testis. In: Burger H, de Kretser DM (eds) The testis, Raven, New York, pp 141–169

    Google Scholar 

  29. Stover BJ, Atherton DR, Bruenger FW, Buster DS (1962) Further studies on the metabolism of 239Pu in adult beagles. Health Phys 8:589–597

    Article  PubMed  CAS  Google Scholar 

  30. Green D, Howells Gr, Vennart J, Watts R (1977) The distribution of plutonium in the mouse ovary. Int J Appl Rad Isotopes 28:497–501

    Article  CAS  Google Scholar 

  31. Searle AG, Beechey CV, Green D, Howells GR (1980) Comparative effects of protracted exposures to 60Co-gamma radiation and 239Pu-alpha radiation on breeding performance in female mice. Int J Radiat Biol 37:189–200

    Article  CAS  Google Scholar 

  32. Searle AG, Beechey CV, Green D, Howells GR (1982) Dominant lethal and ovarian effects of plutonium-239 in female mice. Int J Radiat Biol 42:235–244

    Article  CAS  Google Scholar 

  33. International Atomic Energy Agency (IAEA) (1968) Biological effects of transmutation and decay of radioactive isotopes. IAEA, Vienna

    Google Scholar 

  34. Krische RE, Zelle MR (1969) Biological effects of radioactive decay: the role of the transmutation effect. Adv Radiat Biol 3:177–213

    Google Scholar 

  35. The National Council on Radiation Protection and Measurements (NCRP) (1979) Tritium and other radionuclide labeled organic compounds incorporated in genetic material. NCRP report 63, NCRP Publications, Bethesda, Maryland

    Google Scholar 

  36. Bateman AJ (1977) The dominant lethal assay in the male mouse. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of mutagenicity test procedures, Elsevier, Amsterdam, pp 325–334

    Google Scholar 

  37. Evans EP, Breckon G, Ford CE (1964) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294

    Article  Google Scholar 

  38. Russell WL (1951) X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol 16:327–336

    PubMed  CAS  Google Scholar 

  39. Searle AG (1975) The specific locus test in the mouse. Mutation Res 31:277–290

    PubMed  CAS  Google Scholar 

  40. Russell WL, Cumming RB, Kelly EM, Phipps EL (1979) Induction of specific locus mutations in the mouse by tritiated water. In: Behaviour of tritium in the environment, IAEA Vienna, pp 489–497

    Google Scholar 

  41. Bateman AJ, Chandley AC (1962) Mutations induced in the mouse with tritiated thymidine. Nature (London) 193:705–706

    Article  CAS  Google Scholar 

  42. Carston AL, Commerford SL (1976) Dominant lethal mutations in mice resulting from chronic tritiated water ( HTO) ingestion. Radiat Res 66:609–614

    Article  Google Scholar 

  43. Carston AL, Commerford SL, Cronkite EP (1977) The genetic and late somatic effects of chronic tritium ingestion in mice. Current Topics Radiat Res Quarterly 12:212–224

    Google Scholar 

  44. Kudritskaya OY, Balonov MI (1980) Dynamics of dominant lethal mutation yield in mice affected by tritium. Radiobiol 220:881–885

    Google Scholar 

  45. Balanov MI, Kudritskaya OV (1984) Mutagenic action of tritium upon the germ cells of male mice. I. Induction of dominant lethal mutations by tritium oxide and estimation of RBE. Genetika 20:224–232

    Google Scholar 

  46. Balanov MI, Pomerantsova MD, Ramaiya LK (1984) The mutagenic effects of tritium on germ cells of male mice. Consequences of 3H-glucose incorporation. Radiobiologia 24:753–757

    Google Scholar 

  47. Wu De Chang (1986) The experimental studies on the biological effects of low level radiation. In: Chinese Medical Association (ed) Proc Int Symp Biol Effects of Low Level Radiation, 24-26 Nov 1986, Nanjing (People’s Republic of China), pp 41–59

    Google Scholar 

  48. Mewissen DJ, Ugarte AS (1979) Cumulative genetic effects from exposure of male mice to tritium for 10 generations. In: Biological implications of radionuclides released from nuclear industries, Vol I, IAEA Vienna, p 215

    Google Scholar 

  49. Mewissen DJ, Ugarte AS, Rust JH (1983) Radiation-induced heritable multiple intestinal adenocarcinoma exhibiting Mendelian inheritance with chromosomal abnormality. In: Broerse JJ, Barendsen GW, Kal HB, Van der Kogel AJ (eds) Proc VII Int Cong Rad Res, Book of Abstracts, Sessions C, p C6–12

    Google Scholar 

  50. Ugarte AS, Mewissen DJ, Rust JH (1983) Cumulative genetic effects from exposure of male mice to tritium for 23 generations. In: Broerse JJ, Barendsen GW, Kal HB, Van der Kogel AJ (eds) Proc VII Int Cong Rad Res, Book of Abstracts, Sessions C, pp C4–14

    Google Scholar 

  51. Goud SN, Reddi OS, Reddy PP (1981) Dominant lethal mutations induced by 14C in mice. Experientia 37:448–149

    Article  Google Scholar 

  52. Shevchenko VA, Pomerantseva MD, Ramaiya LK, Vasilenko II, Liaginskaia AM (1981) Genetic effects of incorporated 14C in the male germ cells of mice. 1 The single administration of 14C-glucose. Radiobiologia 21:780

    CAS  Google Scholar 

  53. Reddi OS, Vasudevan B (1968) Increased dominant lethality in mice by phosphorus-32. Nature (London) 218:283

    Article  CAS  Google Scholar 

  54. Krishna M, Reddi OS (1974) Genetic effects of phosphorus-32 in female mice. Radiat Res 59:266 (abstract)

    Google Scholar 

  55. Baev I, Bairakova A, Benova D, Vassillev G (1972) Genetic effects of radioactive isotopes. I. Dominant lethals from strontium-89 or iodine-131 in rat spermatogonia. Strahlentherapie 144:338–341

    PubMed  CAS  Google Scholar 

  56. Lüning KG, Frölen H, Nelson A, Rönnbäck C (1963) Genetic effects of strontium-90 injected into male mice. Nature (London) 197:304–305

    Article  Google Scholar 

  57. Lüning KG, Frölen H, Rönnbäck C, Nelson A (1965) Further studies of the genetic effects of 90Sr on various stages of spermatogenesis in mice. A preliminary report. FOA 1 Report C1164-F17

    Google Scholar 

  58. Lüning KH, Frölen H, Nelson A, Rönnbäck C (1963) Genetic effects of strontium-90 on immature germ cells in mice. Nature (London) 199:303–304.

    Article  Google Scholar 

  59. Reddi OS (1971) Long term genetic effects of strontium-90 in mice. Ind J Med Res 59:1754–1757

    CAS  Google Scholar 

  60. Reddi OS (1970) Genetic effects of 131I in mice. Nature (London) 227:961–962

    Article  CAS  Google Scholar 

  61. Reddi OS, Reddy PP, Krishna M (1974) Iodine-131 induced dominant lethal mutations in mice. Radiat Res 59:265 (Abstract)

    Google Scholar 

  62. Pomerantseva MD, Balanov MI, Ramaiya LK, Vilkina GA (1984) Mutagenic effect of tritium on the germ cells of male mice. II Genetic damages in stem spermatogonia induced by tritiated water and gamma irradiation. Genetika 20:782–787

    PubMed  CAS  Google Scholar 

  63. Pomerantseva MD, Ramaiya LK, Vilkina GA, Shevchenko VA, Vasilenko IJ, Lyaginskaya AM, Istomina AG (1983) Genetic effects of radiocarbon in reproductive cells of male mice. Mutation Res 122:341–346

    Article  PubMed  CAS  Google Scholar 

  64. Reddi OS (1971) 90Sr-induced translocations in mice. Ind J Med Res 59:574–577

    CAS  Google Scholar 

  65. EbenezerDN, Reddy SB, Reddy PP, Reddi OS (1980) Effects of acute and fractionated doses of 131I induced radiation damage to mouse spermatogonia. IRCS Medical Sci 8:912–914

    Google Scholar 

  66. Lavu S, Reddy PP, Reddi OS (1985) Chromosomal abnormalities induced by iodine-125 in mouse germ cells, Int J Rad Biol 48:603–607

    Article  CAS  Google Scholar 

  67. Russell WL, Cumming RB, Kelly EM, Lindenbaum A (1978) Plutonium-induced specific locus mutations in mice. Genetics 88 s 85 (Abstract)

    Google Scholar 

  68. Selby PB, McKinley TW Jr, Raymer GF (1985) Dominant skeletal mutation study shows that the quality factor commonly used for alpha irradiation probably leads to a sizeable overestimation of genetic risk in males. Genetics 110 (suppl):s118

    Google Scholar 

  69. Beechey CV, Green D, Humphreys ER, Searle AG (1975) Cytogenetic effects of plutonium-239 in male mice. Nature (London) 256:577–578

    Article  CAS  Google Scholar 

  70. Searle AG, Beechey CV, Green D, Humphreys ER (1976) Cytogenetic effects of protracted exposures to alpha particles from plutonium-239 and to gamma rays from cobalt-60 compared in male mice. Mutation Res 41:297–310

    Article  PubMed  CAS  Google Scholar 

  71. Grahn D, Frystak BH, Lee CH, Russell JJ, Lindenbaum A (1979) Dominant lethal mutations and chromosome aberrations induced in male mice by incorporated 239Pu and by external fission neutron and gamma irradiation. In: Biological effects of radionuclides released from nuclear industries, Vol I, IAEA Vienna, pp 163–184

    Google Scholar 

  72. Grahn D, Lee CH, Farrington BF (1983) Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to 239Pu alpha particles, fission neutrons, or 60Co-gamma rays. Radiat Res 95:566–583

    Article  PubMed  CAS  Google Scholar 

  73. Generoso WM, Cain KT, Cacheiro NLA, Cornett CV (1985) 239Plutonium-induced heritable translocations in male mice. Mutation Res 152:49–52

    Article  PubMed  CAS  Google Scholar 

  74. Pacchierotti F, Andreozzi U, Russo A, Metalli P (1983) Reciprocal translocations in ageing mice and in mice with long-term low level Pu-239 contamination. Int J Rad Biol 43:445–450

    Article  CAS  Google Scholar 

  75. Lüning KG, Frölén H, Nilsson A (1976) Genetic effects of 239Pu salt injections in male mice. Mutation Res 34:539–542

    Article  PubMed  Google Scholar 

  76. Lüning KG, Frölén H, Nilsson A (1976) Dominant lethal tests of male mice given 239Pu salt injections. In: Biological and environmental effects of low level radiation, Vol I, IAEA Vienna, pp 39–49

    Google Scholar 

  77. Grahn D, Frystak BH, Russell JJ (1978) Genetic effects of americium-241. In: Argonne Nat Lab Rep ANL-79-90, p 29

    Google Scholar 

  78. Searle AG (1984) Genetic effects of tritium in mammals. In: Gerber G, Myttenaere C (eds) European Seminar on the risks from tritium exposure. Commission of European Communities, Brussels, pp 303–312

    Google Scholar 

  79. Sankaranarayanan K (1982) Genetic effects of ionizing radiation in multicellular eukaryotes and the assessment of genetic radiation hazards in man. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  80. Batchelor AL, Phillips RJS, Searle AG (1966) A comparison of the mutagenic effectiveness of chronic neutron and gamma irradiation of mouse spermatogonia. Mutation Res 3:218–229

    Article  PubMed  CAS  Google Scholar 

  81. Searle AG (1967) Progress in mammalian radiation genetics. In: Silini G (ed) Proc III Int Cong Rad Res North Holland, Amsterdam, pp 469–481

    Google Scholar 

  82. Searle AG, Evans EP, West BJ (1969) Studies on the induction of translocations in mouse spermatogonia. II Effects of fast neutron irradiation. Mutation Res 7:235–240

    Article  PubMed  CAS  Google Scholar 

  83. Dobson RL (1979) The toxicity of tritium. In: Biological implications of radionuclides released from nuclear industries, Vol I, IAEA, Vienna, pp 203–211

    Google Scholar 

  84. Dobson RL, Cooper MF (1974) Tritium toxicity: effect of low level 3HOH exposure on developing female germ cells in the mouse. Radiat Res 58, 91–100

    Article  PubMed  CAS  Google Scholar 

  85. Dobson RL, Kwan TC (1977) The tritium RBE at low-level exposure-variation with dose, dose-rate and exposure duration. Curr Top Radiat Res Quarterly 12:44–62

    Google Scholar 

  86. Dobson RL, Kwan TC, Straume T (1984) Tritium effects on germ cells and fertility. In: Gerber G, Myttenaere C (eds) European seminar on the risks from tritium exposure. EUR 9065 EN, Commission of the European Communities, Brussels, pp 285–298

    Google Scholar 

  87. Baker TG, McLaren A (1973) The effect of tritiated thymidine on the developing oocytes of mice. J Reprod Fertil 34:121–130

    Article  PubMed  CAS  Google Scholar 

  88. Straume T, Dobson RL, Kwan TC (1987) Neutron RBEs and the radiosensitive target for mouse immature oocyte killing. Radiat Res 111:47–57

    Article  PubMed  CAS  Google Scholar 

  89. Oakberg EF (1966) Effect of 25 R of X-rays at 10 days of age on oocyte number and fertility of female mice. In: Lindop PJ, Sachers GA (eds) Radiation and ageing, Taylor and Francis, London, pp 293–306

    Google Scholar 

  90. Dobson RL (1985) Delayed reproduction consequences of low level irradiation early in life. Paper presented at the Am Nucl Soc 1985 Winter Meeting, San Francisco, 10–14 Nov 1985, UCRL-92866 Summary

    Google Scholar 

  91. Dobson RL, Felton JS (1983) Female germ cell loss from radiation and chemical exposure. Am J Indust Med 4:175–190

    Article  CAS  Google Scholar 

  92. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1977), Sources and effects of ionizing radiation, 1977 Report to the General Assembly, with annexes. United Nations, New York

    Google Scholar 

  93. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1986), Genetic and somatic effects of ionizing radiation, 1986 Report to the General Assembly, with annexes. United Nations, New York

    Google Scholar 

  94. Trimble BK, Doughty JH (1974) The amount of hereditary disease in human populations. Ann Hum Genet (London) 38:199–229

    Article  CAS  Google Scholar 

  95. Czeizel A, Sankaranarayanan K (1984) The load of genetic and partially genetic disorders in man. I. Congenital anomalies: Estimates of detriment in terms of years of life lost and years of impaired life. Mutation Res 128:73–103

    Article  PubMed  CAS  Google Scholar 

  96. Searle AG (1987) Radiation—the genetic risk. Trends in Genetics 3:152–157

    Article  Google Scholar 

  97. BEIR Report (1972) The effects on populations of exposure to low levels of ionizing radiation. Natl Acad Sci, Natl Res Council, Washington DC

    Google Scholar 

  98. Searle AG, Edwards JH (1986) The estimation of risks from the induction of recessive mutations after exposure to ionizing radiation. J Med Genet 23:220–226

    Article  PubMed  CAS  Google Scholar 

  99. Hennemann G, Krenning EP, Sankaranarayanan K (1986) Place of radioactive iodine in treatment of thyrotoxicosis. Lancet i:1369–1371

    Article  Google Scholar 

  100. Czeizel A, Sankaranarayanan K, Losonci A, Rudas T, Keresztes M (1988) The load of genetic and partially genetic diseases in man. II. Some selected common multifactorial diseases: Estimates of population prevalence and of detriment in terms of years of lost and impaired life. Mutation Res, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Sankaranarayanan, K. (1988). Radionuclides and Genetic Risks. In: Harley, J.H., Schmidt, G.D., Silini, G. (eds) Radionuclides in the Food Chain. ILSI Monographs. Springer, London. https://doi.org/10.1007/978-1-4471-1610-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1610-3_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1612-7

  • Online ISBN: 978-1-4471-1610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics