Model-Based Segmentation and Recognition of Anatomical Brain Structures in 3D MR Images

  • Olivier Cuisenaire
  • Matthieu Ferrant
  • Benoît Macq
  • Jean-Philippe Thiran
Conference paper


We propose a coarse to fine framework for the segmentation and recognition of structures in brain MR Images. We first coarsely segment the outer surface of the brain, which is used as the main criteria for the non-rigid registration of the MR image with a Computerised Brain Atlas. Then, we use the structures in the atlas as the initialisation for active surfaces models. Those surfaces are deformed in order to minimise an energy depending both on the smoothness of the structure and on the image itself.


Active Contour Model Global Transformation Smoothness Term Euclidean Distance Transform Computerise Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Thurjfell, C. Bohm, T. Greitz and L. Eriksson. Transformations and algorithms in a Computerised Brain Atlas. IEEE Transactions on Nuclear Sciences. vol. 40. pp. 1187–1191, 1993.CrossRefGoogle Scholar
  2. [2]
    O. Cuisenaire, J.P. Thiran, B. Macq, C. Michel, A. De Voider and F. Marques. Automatic registration of 3D MR images with a computerised brain atlas, SPIE Medical Imaging 96, Newport Beach, SPIE vol. 1719, pp. 438–449Google Scholar
  3. [3]
    J F Mangln, V. Froin, I. Bloch, B. Bendriem and J. Lopez-Krahe. Fast non-supervised 3D registration of PET and MR Images from the brain. Journal of Cerebral Blood Flow and Mechanism, vol. 14, pp. 749–792, 1994CrossRefGoogle Scholar
  4. [4]
    P.E. Danielsson. Euclidean Distance Mapping, Computer Graphics and Image Processing 14, 1980, 227–248.CrossRefGoogle Scholar
  5. [5]
    O. Cuisenaire. Region Growing Euclidean Distance Transforms. ICIAP’97, Florence, September 97, Lecture Notes in Computer Science.Google Scholar
  6. [6]
    M. Kass, A. Witkin and D. Terzopoulos. Snakes, active contour models. International Journal of Computer Vision, vol. 1, pp. 321–331, 1988CrossRefGoogle Scholar
  7. [7]
    L D Cohen and I. Cohen. Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Pattern Analysis and Machine Intelligence, 15, November 1993Google Scholar
  8. [8]
    W.E. Lorensen and H.E. Cline. Marching Cubes: a High Resolution 3D Surface Construction Algorithm. Proceedings of SIGGRAPH’87, Computer Graphics, vol. 21, No. 4, pp. 163–169.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Olivier Cuisenaire
    • 1
  • Matthieu Ferrant
    • 1
  • Benoît Macq
    • 1
  • Jean-Philippe Thiran
    • 2
  1. 1.Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Ecole Polytechinque Fédérale de LausanneLausanneSwitzerland

Personalised recommendations