Advertisement

Towards Precision Robotic Maneuvering, Survey, and Manipulation in Unstructured Undersea Environments

  • Louis Whitcomb
  • Dana Yoerger
  • Hanumant Singh
  • David Mindell

Abstract

This paper reports recent advances in the precision control of underwater robotic vehicles for survey and manipulation missions. A new underwater vehicle navigation and control system employing a new commercially available 1,200 kHz doppler sonar is reported. Comparative experimental trials compare the performance of the new system to conventional 12 kHz and 300 kHz long baseline (LBL) acoustic navigation systems. The results demonstrate a hybrid system incorporating both doppler and LBL to provide superior tracking in comparison to doppler or LBL alone.

Keywords

Global Position System Navigation System Tracking Performance Underwater Vehicle Vehicle Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. M. Bell, B. M. Howe, J. A. Mercer, and R. C. Spindel. Nonlinear kalman filtering of long-baseline, short-baseline, gps, and depth measurements. In Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, pages 131–136, Pacific Grove, CA, USA, November 1991.Google Scholar
  2. [2]
    J. G. Bellingham, M. Deffenbaugh, J. Leonard, and J. Catipovic. Arctic underice survey operations. Unmanned Systems, 12(1):24–29, 1994.Google Scholar
  3. [3]
    J. A. Catipovic and L. E. Freitag. High data rate acoustic telemetry for moving rovs in a fading multipath shallow water environment. In Proceedings of the Symposium on Autonomous Underwater Vehicle Technology. AUV ‘90, pages 296–303, 1990.Google Scholar
  4. [4]
    S. K. Choi and J. Yuh. Experimental study on a lerning control system with bound estimation for underwater robots. Proc. IEEE Int. Conf. Robt. Aut., pages 2160–2165, April 1996.Google Scholar
  5. [5]
    R. Cristi, F. A. Papoulis, and A. J. Healey. Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE Journal of Oceanic Engineering, 15(3):152–160, June 1990.CrossRefGoogle Scholar
  6. [6]
    T. I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley and Sons, New York, 1994.Google Scholar
  7. [7]
    K. R. Goheen and E. R. Jeffereys. Multivariable self-tuning autopilots for autonomously and remotly operate underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3):144–151, June 1990.CrossRefGoogle Scholar
  8. [8]
    M. M. Hunt, W. M. Marquet, D. A. Moller, K. Ri Peal, W. K. Smith, and R. C. Spindell. An acoustic navigation system. Technical Report WHOI-74-6, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA, December 1974.CrossRefGoogle Scholar
  9. [9]
    P. H. Milne. Underwater Acoustic Positioning Systems. Spon Ltd., New York, 1983.Google Scholar
  10. [10]
    H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H. Henricksen, F. Hover, D. Yoerger, J. Bellingham, and B. Moran. An integrated approach to multiple auv communications, navigation and docking. In Proceedings of the OCEANS 96 MTS/IEEE Conference, pages 59–64, Fort Lauderdale, FL, USA, September 1996.Google Scholar
  11. [11]
    R. C. Spindel, R. P. Porer, W. M. Marquet, and J. L. Durham. A high-resolution pulse-doppler underwater acoustic navigation system. IEEE Journal of Oceanic Engineering, 1(1):6–13, September 1976.CrossRefGoogle Scholar
  12. [12]
    L. L. Whitcomb and D. R. Yoerger. Preliminary experiments in the model-based dynamic control of marine thrusters. In Proc. IEEE Int. Conf. on Robotics and Automation, 1996. (Invited paper).Google Scholar
  13. [13]
    D. R. Yoerger and D. A. Mindell. Precise navigation and control of an rov at 2200 meters depth. In Proceedings of Intervention/ROV 92, San Diego, June 1992. MTS.Google Scholar
  14. [14]
    D. R. Yoerger and J. E. Slotine. Adaptive sliding control of an experimental underwater vehicle. In Proc. IEEE Int. Conf. Robt. Aut., Sacremento, CA, USA, April 1991.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Louis Whitcomb
    • 1
  • Dana Yoerger
    • 2
  • Hanumant Singh
    • 2
  • David Mindell
    • 3
  1. 1.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Deep Submergence Laboratory, Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.MIT Program in Science, Technology, and SocietyCambridgeUSA

Personalised recommendations