Advertisement

Tactile Displays for Increased Spatial and Temporal Bandwidth in Haptic Feedback

  • Robert D. Howe
  • Dimitris A. Kontarinis
  • William J. Peine
  • Parris S. Wellman
Conference paper

Abstract

We are investigating tactile feedback modalities designed to convey high frequency vibratory information and small-scale object shape. Vibrotactile feedback systems transmit information about textures and events like contact and slip that reveal the mechanical state of the remote environment. Shape display devices consist of regular arrays of pin elements that rest against the user’s finger tip. Each pin is raised and lowered to approximate the desired surface shape on the skin. Experiments with prototype tactile feedback systems help improve our understanding of human tactile information requirements and to determine the relationship between task characteristics and the benefits of tactile feedback.

Keywords

Virtual Environment Shape Memory Alloy Force Feedback Tactile Feedback Shape Memory Alloy Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bliss, J. C., et al. (1970). “Optical-to-Tactile Image Conversion for the blind,” IEEE Trans. Man-Machine Systems, MMS-11(1):58–65.CrossRefGoogle Scholar
  2. Boff, K.R., and Lincoln, J.E., eds. (1988). Engineering Data Compendium: Human Perception and Performance. Wright-Patterson AFB, Ohio: Armstrong Aerospace Medical Research Laboratory.Google Scholar
  3. Cohn, M. B., M. Lam, and R. S. Fearing (1992). “Tactile feedback for teleoperation,” in Telemanipulator Technology, SPIE.Google Scholar
  4. Dennerlein, J.T., P. Millman, and R.D. Howe (1997). “Vibrotactile Feedback for Industrial Telemanipulators,” Symp. Haptic Interfaces for Virtual Env. and Teleop. Sys., ASME Intl. Mech. Eng. Congress, Dallas, Nov. 15–21.Google Scholar
  5. Hasser, C. and Weisenberger J.M. (1993). Preliminary evaluation of a shape memory alloy tactile feedback display. Symp. Haptic Interfaces Virtual Env. Teleop. Sys., ASME Winter Annual Meeting, New Orleans.Google Scholar
  6. Howe, R. D. (1994). “Tactile sensing and control of robotic manipulation,” Journal of Advanced Robotics, 8(3):245–261.CrossRefGoogle Scholar
  7. Howe, R.D., Peine, W.J., Kontarinis, D.A., and Son, J.S. (1995). Remote Palpation Technology, IEEE Engineering in Medicine and Biology. 14(3):318–323, May/June.CrossRefGoogle Scholar
  8. Johansson, R. S., & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neuroscience 6(1), 27–32.CrossRefGoogle Scholar
  9. Johansson, R. S., & Westling, G. (1987). “Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip.” Experimental Brain Research, 66:141–154.CrossRefGoogle Scholar
  10. Johnson, K.O. and Phillips, J.R. (1981). Tactile Spatial Resolution. I. Two-Point discrimination, Gap Detection, Grating Resolution, and Letter Recognition. J. Neurophys. 46(6):1177–1191.Google Scholar
  11. Kontarinis, D.A. and R.D. Howe (1995). “Tactile display of vibratory information in teleoperation and virtual environments,” Presence 4(4):387–402.Google Scholar
  12. Minsky, M.D.R. (1995). Computational haptics: The Sandpaper system for synthesizing texture for a force-feedback display. Ph.D. Thesis, MIT, Program in Media Arts & Sciences.Google Scholar
  13. Pawluk, D. T.V. and R. D. Howe (1997). “Contact pressure distribution on the human finger pad,” presented at the 26th Congress of the International Society of Biomechanics, Tokyo, August 25–29.Google Scholar
  14. Peine, W. J., K. C. Foucher, and R. D. Howe (1997). “Finger speed during single digit palpation,” in press, Human Factors.Google Scholar
  15. Sheridan, T. B. (1992). Telerobotics, Automation, and Human Supervisory Control. Cambridge, MA: MIT Press.Google Scholar
  16. Wellman, P. and R.D. Howe (1995). “Towards realistic vibrotactile display in virtual environments,” Symp. Haptic Interfaces for Virtual Env. and Teleop. Sys., Proc. ASME Intl. Mech. Eng. Congress, San Francisco, Nov. 12–17, T.E. Alberts, ed., DSC-Vol. 57-2, p. 713–718.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Robert D. Howe
    • 1
  • Dimitris A. Kontarinis
    • 1
  • William J. Peine
    • 1
  • Parris S. Wellman
    • 1
  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations