Stability of Assemblies as a Criterion for Cost Evaluation in Robot Assembly

  • H. Mosemann
  • F. Röhrdanz
  • F. Wahl
Conference paper

Abstract

In this paper we discuss assembly stability as a criterion for cost evaluation in robot assembly. We propose an algorithm for the calculation of the set of potentially stable orientations of arbitrary configurations of rigid bodies considering static friction under uniform gravity. The algorithm determines the magnitudes of the contact forces leading to potential assembly stability using linear programming techniques. A new evaluation function based on the set of potentially stable assembly orientations is proposed and integrated into the assembly cost evaluation of a high level assembly planning system. The proposed stability analysis is an indispensible prerequisite for the execution of robot assembly operations generated by a task-level programming system.

Keywords

Torque Lution Pyramid Exter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Baraff. Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies. Algorithmica, 10:292–352, 1993.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Blum, A. Griffith, and B. Neumann. A stability test for configurations of blocks. Artificial Intelligence Memo No. 188, Massachusetts Institute of Technology, February 1970.Google Scholar
  3. [3]
    Nico Boneschanscher, Hans van der Drift, Stephen J. Buckley, and Russell H. Taylor. Subassembly stability. Proc. National Conf. on Artificial Intelligence, pages 780–785, August 1988.Google Scholar
  4. [4]
    A. Bourjault. Methodology of assembly automation: A new approach. pages 37–45. International Society for Productivity Enhancement, Springer-Verlag, July 1987.Google Scholar
  5. [5]
    T. L. De Fazio and D. E. Whitney. Simplified Generation of All Mechanical Assembly Sequences. IEEE Journal of Robotics and Automation, RA-3(6):640–658, December 1987.CrossRefGoogle Scholar
  6. [6]
    L. S. Hornern de Mello and S. Lee, editors. Computer-Aided Mechanical Assembly Planning. Kluwer Academic Publishers, 1991.Google Scholar
  7. [7]
    M. Erdmann. On a Representation of Friction in Configuration Space. International Journal of Robotics Research, 13(3):240–270, 1994.CrossRefMathSciNetGoogle Scholar
  8. [8]
    K. Fukuda and A. Prodon. Double description method revisited. Technical report, Institute for Operation Research, ETHZ, Zurich, Switzerland, 1995.Google Scholar
  9. [9]
    R. Hoffman. Computer-Aided Mechanical Assembly Planning, chapter A common sense approach to assembly sequence planning. Kluwer Academic Publishers, 1991.Google Scholar
  10. [10]
    L. S. Hornern de Mello and A. C. Sanderson. AND/OR-Graph Representation of Assembly Plans. IEEE Trans. Robotics and Automation, 6(2): 188–199, April 1990.CrossRefGoogle Scholar
  11. [11]
    S. G. Kaufman, R. H. Wilson, R. E. Jones, and T. L. Calton. The archimedes 2 mechanical assembly planning system. In IEEE International Conference on Robotics and Automation, pages 3361–3368, 1996.Google Scholar
  12. [12]
    L. Kavraki and M. Kolountzakis. Partitioning a planar assembly into two connected parts is np-complete. Information Processing Letters, 55:159–165, 1995.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    S. Lee. Computer-Aided Mechanical Assembly Planning, chapter Backward assembly planning with DFA analysis. Kluwer Academic Publishers, 1991.Google Scholar
  14. [14]
    S. Lee and Y. G. Shin. Assembly Planning based on Geometric Reasoning. Computers and Graphics, 14(2):237–250, 1990.CrossRefGoogle Scholar
  15. [15]
    S. Lee and Chunsik Yi. Assemblability Evaluation Based on Tolerance Propagation. Proc. IEEE Int. Conf. on Robotics and Automation, 2:1593–1598, May 1995.Google Scholar
  16. [16]
    P. Lötstedt. Coulomb friction in two-dimensional rigid body systems. Zeitschrift für Angewandte Mathematik und Mechanik, 61:605–615, 1981.CrossRefMATHGoogle Scholar
  17. [17]
    T. Lozano-Pérez. Spatial Planning: A Configuration Space Approach. IEEE Trans. Computers, C-32(2):26–38, February 1983.CrossRefGoogle Scholar
  18. [18]
    R. Mattikalli, D. Baraff, and P. Khosla. Finding all gravitationally stable orientations of assemblies. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 251–257, March 1994.Google Scholar
  19. [19]
    R. Mattikalli, D. Baraff, P. Khosla, and B. Repetto. Gravitational stability of frictionless assemblies. IEEE Trans. Robotics and Automation, 11(3):374–388, 1995.CrossRefGoogle Scholar
  20. [20]
    R. Mattikalli, D. Baraff, P. Khosla, and B. Repetto. Finding All Stable Orientations of Assemblies with Friction. IEEE Trans. Robotics and Automation, 12(2):290–301, 1996.CrossRefGoogle Scholar
  21. [21]
    E. C. De Meter. Restraint analysis of assembly work carriers. Robotics and Computer Integrated Manufacturing, 1993.Google Scholar
  22. [22]
    J. M. Miller and R. L. Hoffman. Automatic assembly planning with fasteners. In IEEE International Conference on Robotics and Automation, volume 1, pages 69–74, 1989.Google Scholar
  23. [23]
    T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall. Contributions to the theory of games, Vol. 2, chapter The Double Description Method. Princeton University Press, 1953.Google Scholar
  24. [24]
    K. Murty. Linear Programming. Wiley, 1983.Google Scholar
  25. [25]
    R. S. Palmer. Computational Complexity of Motion and Stability of Polygons. PhD thesis, Cornell University, January 1987.Google Scholar
  26. [26]
    J. Pertin-Troccaz. Grasping: A State of the Art, chapter Programming, Planning, and Learning, pages 71–98. The Robotics Review. MIT Press, 1989.Google Scholar
  27. [27]
    F. Röhrdanz, R. Gutsche, and F. M. Wahl. Assembly Planning and Geometric Reasoning for Grasping. In I. Plander, editor, Sixth Int. Conf. on Artificial Intelligence and Information-Control Systems of Robots, pages 93–106. World Scientific, September 1994.Google Scholar
  28. [28]
    F. Röhrdanz, H. Mosemann, and F. M. Wahl. Stability Analysis of Assemblies Considering Friction. Technical Report 5-1996-1, Institute for Robotics and Process Control, Braunschweig, Germany, May 1996.Google Scholar
  29. [29]
    F. Röhrdanz, H. Mosemann, and F. M. Wahl. Generating und Evaluating Stable Assembly Sequences. Journal of Advanced Robotics, 11(2):97–126, 1997.CrossRefGoogle Scholar
  30. [30]
    F. Röhrdanz, H. Mosemann, and F. M. Wahl. HighLAP: A High Level System for Generating, Representing, and Evaluating Assembly Sequences. International Journal on Artificial Intelligence Tools, 6(2):149–163, 1997.CrossRefGoogle Scholar
  31. [31]
    B. Romney, C. Godard, M. Goldwasser, and G. Ramkumar. An efficient system for geometric assembly sequence generation and evaluation. In ASME International Computers in Engineering Conference, pages 699–712, 1995.Google Scholar
  32. [32]
    J. M. Schimmels and M. A. Peshkin. Force-assembly with friction. IEEE Transactions on Robotics and Automation, 1994.Google Scholar
  33. [33]
    K. B. Shimoga. Robot Grasp Synthesis Algorithms: A Survey. International Journal of Robotics Research, 15(3):230–266, June 1996.CrossRefGoogle Scholar
  34. [34]
    C. K. Shin, D. S. Hong, and H. S. Cho. Disassemblability Analysis for Generating Robotic Assembly Sequences. Proc. IEEE Int. Conf. on Robotics and Automation, 2:1284–1289, May 1995.Google Scholar
  35. [35]
    User Manual and Tutorials, IGRIP Version 3.0. Deneb Robotics, 3285 Lapeer Road West, P.O. Box 214687, Auburn Hills, MI 48321–4687, 1994.Google Scholar
  36. [36]
    J. Trinkle, J. S. Pang, S. Sudarsky, and G. Lo. On dynamic multi-rigid-body contact problems with coulomb friction. Technical report, Department of Computer Science, Texas A&M University, 1995.Google Scholar
  37. [37]
    J. M. Valade. Geometric reasoning and automatic synthesis of assembly trajectory. In International Conference on Advanced Robotics, pages 43–50, 1985.Google Scholar
  38. [38]
    J. Wolter. On the Automatic Generation of Assembly Plans. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 62–68, 1989.Google Scholar
  39. [39]
    J. D. Wolter and J. C. Trinkle. Automatic selection of fixture points for frictionless assemblies. In IEEE International Conference on Robotics and Automation, 1994.Google Scholar
  40. [40]
    T. C. Woo and D. Dutta. Automatic disassembly and total ordering in three dimensions. Transactions of the ASME, 113(2):207–213, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • H. Mosemann
    • 1
  • F. Röhrdanz
    • 1
  • F. Wahl
    • 1
  1. 1.Institute for Robotics and Process ControlTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations