Signal Processing for Network Access Technologies: An Overview

  • Giovanni Cherubini
Conference paper


Signal processing techniques that are at the core of state-of-the-art network access technologies are discussed. Emphasis is placed on recent developments in access technologies for the public telephone network, local-area networks, and cable TV/community antenna TV wide-area networks.


Medium Access Control Spectral Efficiency Transmission Link American National Standard Institute Public Switch Telephone Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Honcharenko, W., Kruys, J. P., Lee, D. Y., Shah, N. J.: Broadband wireless access. IEEE Commun. Mag. 35 (1997) 20–27CrossRefGoogle Scholar
  2. 2.
    Yu, C. C., Morton, D., Stumpf, C., White, R. G., Wilkes, J. E., Ulema, M.: Low-tier wireless local loop radio systems. Part 1: Introduction. IEEE Commun. Mag. 35 (1997) 84–93CrossRefGoogle Scholar
  3. 3.
    Ahamed, S. V., Gruber, P. L., Werner, J.-J.: Digital subscriber line (HDSL and ADSL) capacity of the outside loop plant. IEEE J. Select. Areas Commun. 13 (1995) 1540–1549CrossRefGoogle Scholar
  4. 4.
    Chen, W. Y., Waring, D. L.: Applicability of ADSL to support video dial tone in the copper loop. IEEE Commun. Mag. 32 (1994) 102–109CrossRefGoogle Scholar
  5. 5.
    Hawley, G. T.: Systems considerations for the use of xDSL technology for data access. IEEE Commun. Mag. 35 (1997) 56–61CrossRefGoogle Scholar
  6. 6.
    Cioffi, J. M., Dudevoir, G. P., Eyuboglu, M. V., Forney, G. D. Jr.: MMSE decision-feedback equalizers and coding. IEEE Trans. Commun. 43 (1995) 2582–2604MATHCrossRefGoogle Scholar
  7. 7.
    Ungerboeck, G.: Channel coding with multilevel/phase signals. IEEE Trans. Inform. Theory IT-28 (1982) 55–67Google Scholar
  8. 8.
    Tomlinson, M.: New automatic equalizer employing modulo arithmetic. Electron. Lett. 7 (1971) 138–139CrossRefGoogle Scholar
  9. 9.
    Harashima, H., Miyakawa, H.: Matched transmission technique for channels with intersymbol interference. IEEE Trans. Commun. COM-20 (1972) 774–780Google Scholar
  10. 10.
    Eyuboglu, M. V., Forney, G. D. Jr.: Trellis precoding: Combined coding, precoding and shaping for intersymbol interference channels. IEEE Trans. Inform. Theory 38 (1992) 301–314MATHCrossRefGoogle Scholar
  11. 11.
    Laroia, R., Tretter, S. A., Farvardin, N.: A simple and effective precoding scheme for noise whitening on intersymbol interference channels. IEEE Trans. Commun. 41 (1993) 460–463CrossRefGoogle Scholar
  12. 12.
    Laroia, R.: Coding for intersymbol interference channels - Combined coding and precoding. IEEE Trans. Inform. Theory 42 (1996) 1053–1061MATHCrossRefGoogle Scholar
  13. 13.
    Cherubini, G., Ölçer, S., Ungerboeck, G.: Trellis precoding for channels with spectral nulls. Proc. 1997 IEEE Int’l Symp. on Information Theory, Ulm, Germany, June 29–July 4, 1997 ( IEEE, Piscataway, 1997 ) p. 464Google Scholar
  14. 14.
    Cherubini, G., Creigh, J., Ölçer, S., Rao, S. K., Ungerboeck, G.: 100BASE-T2: 100 Mbit/s over two pairs of category-3 cabling. Proc. 1997 IEEE Int’l Conf. on Communications “ICC’97,” Montreal, Canada, June 8–12, 1997 (IEEE, Piscataway, 1997 ) vol. 2, pp. 1014–1018Google Scholar
  15. 15.
    Petersen, B. R., Falconer, D. D.: Minimum mean square equalization in cyclostationary and stationary interference - Analysis and subscriber line calculations. IEEE J. Select. Areas Commun. 9 (1991) 931–940CrossRefGoogle Scholar
  16. 16.
    Chevillat, P. R., Maiwald, D., Ungerboeck, G.: Rapid training of a voiceband data-modem receiver employing an equalizer with fractional-T spaced coefficients. IEEE Trans. Commun. COM-35 (1987) 869–876Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Giovanni Cherubini
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations