Advertisement

OOIS’97 pp 247-258 | Cite as

Temporal Business Objects: A Waste of Time?

  • Paul Schleifer
  • Yuan Sun
  • Dilip Patel
Conference paper

Abstract

It has been widely observed that temporal semantics and functionality are often developed on an ad hoc basis, and the benefits of temporal database research are rarely realised. The object-oriented paradigm offers many in terms of performance, semantic richness, and re-use; these advantages can be realised as conceptual and software components known as business objects. However, fundamental barriers to the use of temporal database research in real business software remain. These barriers, namely the absence of a consensus temporal object model and the lack of suitable temporal modelling tools, are addressed in this paper. Unless these issues are addressed, the development of re-usable temporal business objects will not yield tangible benefits in commercial environments.

Keywords

Business Object Valid Time Temporal Database Temporal Object Evolve Information System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Snodgrass, R.T., and Jensen, C.S. (1995). Temporal databases. Twenty-first International Conference on Very Large Data Bases, Tutorial Handout D.Google Scholar
  2. 2.
    Tsotras, V.J., and Kumar, A. (1996). Temporal database bibliography update. ACM SIGMOD Record 25 (1).Google Scholar
  3. 3.
    McKenzie, E., and Snodgrass, R.T. (1991). Evaluation of relational algebras incorporating the time dimension in databases. ACM Computing Surveys 23 (4): 501–543.CrossRefGoogle Scholar
  4. 4.
    Davies, C., and Lazell, B. (1995). How helpful is current theory for the representation of time in real databases? Proc. 3rd European Conference on Information Systems, Athens, Greece, pp. 1207–1218.Google Scholar
  5. 5.
    Inmon, W.H. (1992). Building the Data Warehouse. John Wiley & Sons, Inc.Google Scholar
  6. 6.
    Hurson, A.R., Pakzad, S.H., Cheng, J.-B. (1993). Object-oriented database management systems: Evolution and Performance Issues. IEEE Computer 26 (2): 48–60.CrossRefGoogle Scholar
  7. 7.
    Date, C.J. (1995). An Introduction to Database Systems, Volume /. Sixth Edition, Addison-Wesley Publishing Company.Google Scholar
  8. 8.
    Partridge, C. (1996). Business Objects: Re-engineering for Re-use. Butterworth- Heinemann, Oxford.Google Scholar
  9. 9.
    Pissinou, N., Snodgrass, R.T., Elmasri, R., Mumick, I.S., Ozsu, M.T., Pernici, B., Segev, A., Theodoulis, B., and Dayal, U. (1994). Towards an infrastructure for temporal databases. ACM SIGMOD Record 23 (1): 35–51.CrossRefGoogle Scholar
  10. 10.
    Jensen, C.S., Clifford, J., Gadia, S.K., Segev, A., and Snodgrass, R.T. (1992) A glossaiy of temporal database concepts. ACM SIGMOD Record 21 (3): 35–43.CrossRefGoogle Scholar
  11. 11.
    Klopprogge, M.R. (1981). TERM: An approach to include the time dimension in the entity-relationship model. Proc. 2nd International Conf. E-R Approach, pp. 473–508.Google Scholar
  12. 12.
    Rose, E., and Segev, A. (1991). TOODM — a temporal object-oriented data model with temporal constraints. Proc. 10th International Conference on the Entity-Relationship Approach, Texas, USA, pp. 205–229.Google Scholar
  13. 13.
    Schleifer, P., Sun, Y., and Patel, D (1996). The implementation of a chronicle collection class in Smalltalk/DB. Proc. lltb Annual ACM Symposium on Applied Computing ( Special Track on Database Technology ), Philadelphia, PA. pp. 209–216.Google Scholar
  14. 14.
    Pissinou, N., and Makki, K. (1993). Separating semantics from representation in a temporal object database domain. Proc. 2nd International Conference on Information and Knowledge Management, Washington, USA, pp. 295–304.Google Scholar
  15. 15.
    Clifford, J., and Croker, A. (1987). The historical relational data model (HRDM) and algebra based on lifespans. Proc. International Conference on Data Engineering, Los Angeles, California., pp. 528–537.Google Scholar
  16. 16.
    Gadia, S., (1988). A homogeneous relational model and query languages for temporal data. ACM Transactions on Database Systems 13 (4): 418–448.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Snodgrass, R.T., (1987). The temporal query language, TQuel. ACM Transactions on Database Systems 12 (2): 247–298.CrossRefGoogle Scholar
  18. 18.
    Sarda, N.L. (1990). Extensions to SQL for historical databases. IEEE Transactions on Knowledge and Data Engineering 2 (2): 220–230.CrossRefGoogle Scholar
  19. 19.
    Falkenberg, E.D., Oei, J.L.H., and Proper, H.A. (1992). A conceptual framework for evolving information systems. In Dynamic Modelling of Information Systems I I. Sol, H.G., and Crosslin, R.L. (editors). Elsevier Science Publishers B.V.Google Scholar
  20. 20.
    Falkenberg, E.D., Oei, J.L.H., and Proper, H.A. (1993). Evolving information systems: Beyond temporal information systems. Proc. 3rd International Conference on Database and Expert Systems Applications 3: 282–287.Google Scholar
  21. 21.
    Proper, H.A., and van der Weide, T.P. (1995). A general theory for evolving application models. IEEE Transactions on Knowledge and Data Engineering 7 (6): 984–996.CrossRefGoogle Scholar
  22. 22.
    Andalay, J., Leonard, M., and Palisser, C. (1991). Management of schema evolution in databases. Proc. 17th International Conference VLDB, Barcelona, Spain, pp. 161–170.Google Scholar
  23. 23.
    Banerjee, J., and Kim, W. (1987). Semantics and implementation of schema evolution in object-oriented databases. Proc. ACM SIGMOD Conf, San Francisco, pp. 311–322.Google Scholar
  24. 24.
    Lerner, B., and Habermann, A. (1990). Beyond schema evolution to database reorganisation. ACM SIGPLANNotices 25 (10): 67–76.CrossRefGoogle Scholar
  25. 25.
    Skarra, A.H., and Zdonik, S.B. (1986). The management of changing types in an object-oriented database. ACM SIGPLAN Notices 21 (ll): 483–495.CrossRefGoogle Scholar
  26. 26.
    Simon, H. (1972). The theory of problem solving. Information Processing 71: 261–277.Google Scholar
  27. 27.
    Clifford, J., Croker, A., Grandi, F., and Tuzhilin, A. (1995). On temporal grouping. Proc. International Workshop on Temporal Databases, Zurich, pp. 194–213.Google Scholar
  28. 28.
    Gadia, S.K., Nair, S.S., and Poon, Y.-C. (1992). Incomplete information in relational temporal databases. Proc. 18th Conference on Very Large Data Bases, Vancouver, Canada, pp. 395–406.Google Scholar
  29. 29.
    Jensen, C.S., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P., and Jajodia, S. [editors] (1994). A consensus glossary of temporal database concepts. ACM SIGMOD Record 23 (l): 52–64.CrossRefGoogle Scholar
  30. 30.
    Kim, W. (1995). Introduction to part 1: Next-generation database technology. In Modern Database Systems: The Object Model, Interoperability, and Beyond, Kim, W. (editor), ACM Press, New York, pp. 5–17.Google Scholar
  31. 31.
    Wuu, G.T.J, and Dayal, U. (1993). A uniform model for temporal and versioned object- oriented databases. In Temporal Databases. Tansel, A.U.T., et al. (editors), Benjamin/Cummings, pp. 230–247.Google Scholar
  32. 32.
    Segev, A., and Shoshani, A. (1987). Logical modelling of temporal data. Proc. ACM SIGMOD International Conf\on Management of Data, vSan Francisco, pp. 454–466.Google Scholar
  33. 33.
    Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented Modeling and Design. Prentice-Hall.Google Scholar
  34. 34.
    Dlustra (1994). Illustra TimeSeries DataBlade, technical information, Illustra Information Technologies, Inc.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Paul Schleifer
    • 1
  • Yuan Sun
    • 2
  • Dilip Patel
    • 1
  1. 1.School of ComputingSouth Bank UniversityLondonUK
  2. 2.Compuware Ltd.Slough, Berks.UK

Personalised recommendations