Skip to main content

Fuzzy Neural Networks for Pattern Recognition

  • Conference paper

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

The objective of this paper is to discuss a state-of-the-art of methodology and algorithms for integrating fuzzy sets and neural networks in a unique framework for dealing with pattern recognition problems, in particular classification procedures. Methods of pattern recognition are studied in two main streams, namely supervised and unsupervised learning. We propose our own definition of fuzzy neural integrated networks. This criterion is proposed as a unifying framework for comparison of algorithms. In the first part of the this paper, classification methods based on rule sets or numerical data are reviewed, together with specific methods for handling classification in image processing. In the second part of this paper, several fuzzy neural clustering models are reviewed and compared. These models are: i) Self-Organizing Map (SOM); ii) Fuzzy Learning Vector Quantization (FLVQ); iii) Carpenter-Grossberg- Rosen Fuzzy Adaptive Resonance Theory (CGR Fuzzy ART); iv) Growing Neural Gas (GNG); and v) Fully self-Organizing Simplified Adaptive Resonance Theory (FOSART).

The introduction and Part I of this work have been authored by A. Petrosino, whereas Part II has been authored by A. Baraldi and P. Blonda.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Keller and D. J. Hunt. Incorporating fuzzy membership functions into the perceptron algorithm. IEEE Trans. Pattern Analysis Machine Intelligence, 7 (6), 693–699, 1985.

    Article  Google Scholar 

  2. C.-T. Lin and C. S. G. Lee. Neural Fuzzy Systems, Prentice Hall PTR, 1996.

    Google Scholar 

  3. J.-S. R. Jang, C.-T. Sun and E. Mizutani, Neuro-fuzzy and Soft Computing, Prentice Hall PTR, 1997.

    Google Scholar 

  4. L. A. Zadeh. Fuzzy sets. Information Control, 8, 338–353, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. A. Zadeh. Outline of a new approach to the analysis of compe systems and decision processes. IEEE Trans. System Man and Cybernetics, 1, 28–44, 1973.

    Article  MathSciNet  Google Scholar 

  6. M. Umano, M. Mizumoto and K. Tanaka. FTDS systems: a fuzzy set manipulation system. Information Science, 14, 115–159, 1978.

    Article  Google Scholar 

  7. K. Uehara and M. Fujise. Fuzzy inference based on families of α–level sets. IEEE Trans. on Fuzzy Ssytems, 1 (2), 111–124, 1993.

    Article  Google Scholar 

  8. H. Ishibuchi and H. Tanaka. Fuzzy regression analysis using neural networks. Fuzzy sets and systems, 50, 257–265, 1992.

    Article  MathSciNet  Google Scholar 

  9. H. Ishibuchi, R. Fujioka and H. Tanaka. Neural networks that learn from fuzzy if-then rules. IEEE Trans. on Fuzzy Systems, 1 (2), 85–97, 1993.

    Article  Google Scholar 

  10. C.-T. Lin and Y.-C. Lu. A neural fuzzy system with fuzzy supervised learning. IEEE Trans. on System Man and Cybernetics, 26 (5), 744–763, 1996.

    Article  Google Scholar 

  11. L. X. Wang and J. M. Mendel. Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Trans, on Neural Networks, 3 (5), 807–814, 1992.

    Article  Google Scholar 

  12. H. M. Kim and J. M. Mendel. Fuzzy basis functions: comparisons with other basis functions. IEEE Trans, on Fuzzy Systems, 3 (2), 158–168, 1995.

    Article  Google Scholar 

  13. F. Casalino, F. Masulli and A. Sperduti. Rule specialization in networks of fuzzy basis functions. Internat. Journal of Intelligent Automation and Soft Computing, in press, 1997.

    Google Scholar 

  14. J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans, on System Man and Cybernetics, 23 (3), 665–685, 1993.

    Article  MathSciNet  Google Scholar 

  15. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. System Man and Cybernetics, 15 (1), 116–132, 1985.

    MATH  Google Scholar 

  16. R. R. Yager. Modeling and formulating fuzzy knowledge bases using neural networks. Neural Networks, 7 (8), 1273–1283, 1994.

    Article  Google Scholar 

  17. T. Poggio and F. Girosi. Networks for approaximation and learning. IEEE Proceedings, 78 (9), 1481–1497, 1990.

    Article  Google Scholar 

  18. M. M. Gupta. Fuzzy logic and neural networks, Proc. of Tenth Intern. Conf. on Multicriterion Decision Making, Taipei, 281–294, 1992.

    Google Scholar 

  19. R. Krishnapuram and L. F. Lee. Fuzzy-set-based hierarchical networks for information fusion in computer vision. Neural Networks, 5, 335–350, 1992.

    Article  Google Scholar 

  20. S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets and classification. IEEE Trans. on Neural Networks, 3 (5), 683–697, 1992.

    Article  Google Scholar 

  21. P. K. Simpson. Fuzzy min–max neural networks — Part I: Classification. IEEE Trans, on Neural Networks, 3 (5), 776–786, 1992.

    Article  Google Scholar 

  22. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, New York, John Wiley, 1973.

    MATH  Google Scholar 

  23. W. E. Blanz and S. L. Gish. A connectionist classifier architecture applied to image segmentation. Proc. 10th Intern. Conf Pattern Recognition, 272–277, Atlantic City, NJ.

    Google Scholar 

  24. B. S. Manjunath, T. Simchony and R. Chelappa. Stochastic and deterministic networks for texture segmentation. IEEE Trans. Acoustic Speech and Signal Processing, 38 (6), 1039–1049, 1990.

    Article  Google Scholar 

  25. A. De Luca and S. Termini. A definition of nonprobabilistic entropy in the setting of fuzzy set theory. Information Control, 20, 301–312, 1972.

    Article  MATH  Google Scholar 

  26. A. Kandel. Fuzzy Mathematical Techniques with Applications, New-York, 1975.

    Google Scholar 

  27. A. Ghosh, N. R. Pal and S. K. Pal. Self-organization for object extraction using a multilayer neural network and fuzziness measures. IEEE Trans. on Fuzzy Systems, 1 (2), 54–68, 1993.

    Article  Google Scholar 

  28. A. Ghosh. Use of fuzziness measures in layered networks for object extraction: a generalization. Fuzzy sets and systems, 72, 331–348, 1995.

    Article  Google Scholar 

  29. E. R. Caianiello and A. Petrosino. Neural networks, fuzziness and image processing, in Machine and Human Perception: Analogies and Divergencies, (V. Cantoni Ed.), 355–370, Plenum Press, New York, 1994.

    Google Scholar 

  30. A. Petrosino. Rough fuzzy sets and unsupervised neural learning: appli¬cations in computer vision, in New Trends in Fuzzy Logic, (A. Bonarini et al. Ed.), 166–176, 1996.

    Google Scholar 

  31. C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic control and description system. IEEE Trans. on Computers, 40 (12), 1320–1336, 1991.

    Article  MathSciNet  Google Scholar 

  32. C.-T. Lin. A neural fuzzy control system with structure and parameter learning. Fuzzy sets and systems, 70, 183–212, 1995.

    Article  MathSciNet  Google Scholar 

  33. C.J. Lin and C.–T. Lin. An ART–based fuzzy adaptive learning control network. Proc. IEEE Intern. Con. Fuzzy Systems, 1, 1–6, Orlando, FL, 1994.

    Google Scholar 

  34. H. Takagi and I. Hayashi. NN-driven fuzzy reasoning. International Journal of Approximate Reasoning, 5 (3), 191–212, 1991.

    Article  MATH  Google Scholar 

  35. D. Nauck and R. Kruse. NEFCLASS- A neuro-fuzzy approach for the classification of data, in Proc. of 1995 ACM Symposium on Applied Computing, (K. M. George et a I. Eds ), ACM Press, 1995.

    Google Scholar 

  36. S. K. Halgamuge and M. Glesner. Neural networks in designing fuzzy systems for real world applications. Fuzzy sets and systems, 65, 1–12, 1994.

    Article  Google Scholar 

  37. W. Pedrycz. Fuzzy neural networks with reference neurons as pattern classifiers. IEEE Trans, on Neural Networks, 3 (5), 770–775.

    Google Scholar 

  38. R. Yasdi. Combining rough sets learning and neural learning method to deal with uncertain and imprecise information. Neurocomputing, 7, 61–84, 1995.

    Article  MATH  Google Scholar 

  39. H. R. Berenji. A reinforment learning-based architecture for fuzzy logic control. International Journal of Approximate Reasoning, 6, 267–292, 1992.

    Article  MATH  Google Scholar 

  40. A. Baraldi and F. Parmiggiani. Fuzzy clustering: critical analysis of the contextual mechanisms employed by three neural network models. SPIE Proc. on Applications of Fuzzy Logic Thecnology III(B. Bosacchi, J. Bezdek Eds.), SPIE Vol. 2761, 261–270, 1996.

    Google Scholar 

  41. Anonymous referee, IEEE Trans. on Neural Networks, 1997.

    Google Scholar 

  42. S. Mitra and S. K. Pal. Self-organizing neural network as a fuzzy classifier. IEEE Trans, on Systems, Man, and Cybernetics, 24 (3), 385–399, 1994.

    Article  Google Scholar 

  43. T. Kohonen. The self-organizing map. Proceedings of the IEEE 78 (9), 1464–1480, 1990.

    Article  Google Scholar 

  44. T. Kohonen. Self-organization and Associative Memory, 2nd Edition, Spriger Verlag, Berlin, 1988.

    MATH  Google Scholar 

  45. J. C. Bezdek and N. R. Pal. Two soft relative of learning vector quantization. Neural Networks, 8 (5), 729–743, 1995.

    Article  Google Scholar 

  46. E. C. Tsao, J. C. Bezdek and N. R. Pal. Fuzzy Kohonen clustering network. Pattern Recognition, 27 (5), 757–764, 1994.

    Article  Google Scholar 

  47. P. K. Simpson. Fuzzy Min-Max neural network-Part 2: Clustering. IEEE Trans, on Fuzzy Systems, 1 (1), 32–45, 1993.

    Article  Google Scholar 

  48. T. M. Martinetz, S. G. Berkovich and K. J. Schulten. Neural-gas network for vector quantization and its application to time-series prediction. IEEE Trans, on Neural Networks 4 (4), 558–569, 1993.

    Article  Google Scholar 

  49. M. Fontana, N. A., Borghese, and S. Ferrari, Image reconstruction using improved Neural-Gas. Proc. Italian Workshop on Neural Networks’95 (M. Marinaro and R. Tagliaferri Eds.), Singapore, World Scientific, 260–265, 1995.

    Google Scholar 

  50. G. Carpenter, S. Grossberg and D.B. Rosen. Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4, 759–771, 1991.

    Article  Google Scholar 

  51. G. Carpenter, S. Grossberg, N. Maukuzon, J. Reynolds and D. B. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans, on Neural Networks, 3 (5), 698–713, 1992.

    Article  Google Scholar 

  52. G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37, 54–115, 1987.

    Article  Google Scholar 

  53. G. A. Carpenter and S. Grossberg. ART2: Self–organization of stable category recognition codes for analog input patterns. Applied Optics, 26 (23), 4919–4930, 1987.

    Article  Google Scholar 

  54. A. Baraldi and F. Parmiggiani. Fuzzy combination of the Kohonen and ART neural network models to detect statistical regularities in a random sequence of multi-valued input patterns. Proc. Int. Conf. on Neural Networks’97, Houston, TX, June 1997, in press.

    Google Scholar 

  55. B. Fritzke. A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7(G. Tesauro, D. S. Touretzky, and T. K. Leen Eds.), Cambridge, MA: MIT Press, 625–632, 1995.

    Google Scholar 

  56. B. Fritzke. Some competitive learning methods. Draft document, http: //www. neuroinformatik.ruhr — uni — bochum.de/ini/VDM/ research/gsn/DemoGNG, 1997.

    Google Scholar 

  57. A. Baraldi and F. Parmiggiani. A fuzzy neural network model capable of generating/removing neurons and synaptic links dynamically. Proc. of the II Italian Workshop on Fuzzy Logic (A. Petrosino, Ed.), World Scientific, Singapore, 1997, in press.

    Google Scholar 

  58. A. Baraldi and F. Parmiggiani. Novel neural network model combining radial basis function, competitive Hebbian learning rule, and fuzzy simplified adaptive resonance theory. SPIE Proc. on Applications of Fuzzy Logic Technology IV, San Diego, CA, July 1997, in press.

    Google Scholar 

  59. M. Bianchini and M. Gori. Optimal learning in artificial neural networks: a review of theoretical results. Neurocomputing, 13 (2–4), 313–346, 1996.

    Article  Google Scholar 

  60. R. Serra and G. Zanarini. Complex systems and cognitive processes. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  61. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning internal representations by error propagation, Parallel Distributed Processing (D. E. Rumelhart and J. L. McClelland, Eds.), 1, 318–362, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  62. T. M. Martinetz and K. J. Schulten. Topology representing networks. Neural Networks, 7 (3), 507–522, 1994.

    Article  Google Scholar 

  63. D. Parisi. La scienza cognitiva tra intelligenza artificiale e vita artificiale. Neuroscienze e Scienze dell’Artificiale: dal Neurone all’Intelligenza (E. Biondi et al., Eds.), Patron, Bologna, Italy, 321–341, 1991 (in Italian).

    Google Scholar 

  64. J.J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. National Academy of Sciences, 74, 2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  65. T. Masters. Signal and Image Processing With Neural Networks. A C++ Sourcebook. Wiley, New York, 1994.

    Google Scholar 

  66. N. B. Karayannis and P. Pai. Fuzzy algorithms for learning vector quantization. IEEE Trans. on Neural Networks, 7 (5), 1196–1211, 1996.

    Article  Google Scholar 

  67. N. B. Karayannis, and M. Ravuri. An integrated approach to fuzzy learning vector quantization and fuzzy c–means clustering. Intelligent Engineering Systems Through Artificial Neural Networks (C. H. Dagli et al Eds.), 5, ASME Press, New York, NY, 247–252, 1995.

    Google Scholar 

  68. N. B. Karayannis, J. C. Bezdek. An integrated approach to fuzzy learning vector quantization and fuzzy c–means clustering. IEEE Trans. on Fuzzy Systems, under review.

    Google Scholar 

  69. N. B. Karayannis. Learning vector quantization: A review. Int. Journal of Smart Engineering System Design, in press, 1997.

    Google Scholar 

  70. J. C. Bezdek, and N. R. Pal. Generalized clustering networks and Ko– honen’s self–organizing scheme. IEEE Trans, on Neural Networks, 4 (4), 549–557, 1993.

    Article  Google Scholar 

  71. N. B. Karayannis, J. C. Bezdek, N. R. Pal, R. J. Hathaway and P. Pai. Repair to GLVQ: A new family of competitive learning schemes. IEEE Trans. on Neural Networks, 7 (5), 1062–1071, 1996.

    Article  Google Scholar 

  72. A. Baraldi, P. Blonda, F. Parmiggiani, G. Pasquariello and G. Satalino. How is descending FLVQ sensitive to values of its weighting exponent?. IEEE Trans. on Neural Networks, submitted.

    Google Scholar 

  73. K. Raghu and J. M. Keller. A possibilistic approach to clustering. IEEE Trans, on Fuzzy Systems, 1 (2), 98–110, 1993.

    Article  Google Scholar 

  74. ftp://ftp.sas. com/pub/neural/FAQ.

    Google Scholar 

  75. F. Y. Shih, J. Moh and F. Chang. A new ART-based neural architecture for pattern classification and image enhancement without prior knowledge. Pattern Recognition, 25 (5), 533–542, 1992.

    Article  Google Scholar 

  76. J. Huang, M. Georgiopoulos and G. L. Heileman. Fuzzy ART properties. Neural Networks, 8 (2), 203–213, 1995.

    Article  Google Scholar 

  77. S. Geman, E. Bienenstock and R. Dourstat. Neural networks and the bias/variance dilemma. Neural Computation, 4 (1), 1–58, 1992.

    Article  Google Scholar 

  78. P. Blonda, G. Satalino, A. Baraldi and A. Bognani, “Neuro-fuzzy analysis of remote sensed antarctic data,” Proc. of the II Italian Workshop on Fuzzy Logic (A. Petrosino, Ed.), World Scientific, Singapore, 1997, in press.

    Google Scholar 

  79. Y. Pao. Adaptive pattern recognition and neural networks. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  80. B. Fritzke. Growing cell structures — A self-organizing network for unsupervised and supervised learning. Neural Networks, 7 (9), 1441–1460, 1994.

    Article  Google Scholar 

  81. S. Kim and and S. Mitra. Integrated Adaptive Fuzzy Clustering (IAFC) algorithm. Proc. of the Second IEEE International Conference on Fuzzy Systems, 2, 1264–1268, 1993.

    Article  Google Scholar 

  82. B. Fritzke. Personal communication, 1997.

    Google Scholar 

  83. B. Fritzke. The LBG-U method for vector quantization — An improvement over LBG inspired from neural networks. Neural Processing Letters, 5 (1), 1997, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Baraldi, A., Blonda, P., Petrosino, A. (1998). Fuzzy Neural Networks for Pattern Recognition. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets WIRN VIETRI-97. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-1520-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1520-5_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1522-9

  • Online ISBN: 978-1-4471-1520-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics