Advertisement

Elastic joints

  • Carlos Canudas de Wit
  • Bruno Siciliano
  • Georges Bastin
Part of the Communications and Control Engineering book series (CCE)

Abstract

This chapter deals with modelling and control of robot manipulators with joint flexibility. The presence of such a flexibility is a common aspect in many current industrial robots. When motion transmission elements such as harmonic drives, transmission belts and long shafts are used, a dynamic time-varying displacement is introduced between the position of the driving actuator and that of the driven link.

Keywords

State Feedback Tracking Control Robot Manipulator Motor Variable Zero Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ailon and R. Ortega, “An observer-based set-point controller for robot manipulators with flexible joints,”Systems & Control Lettvol. 21, pp. 329–335, 1993.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    B. BrogUato, R. Ortega, and R. Lozano, “Global tracking controllers for flexible-joint manipulators: a comparative study,”Automaticavol. 31, pp. 941–956, 1995.CrossRefGoogle Scholar
  3. [3]
    G. Cesareo and R. Marino, “On the controllability properties of elastic robots,” inAnalysis and Optimization of Systems, A. Bensoussan and J.L. Lions (Eds.), Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, D, vol. 63, pp. 352–363, 1984.CrossRefGoogle Scholar
  4. [4]
    G. Cesareo, F. Nicolò, and S. Nicosia, “DYMIR: A code for generating dynamic model of robots,”Proc. 1984 IEEE Int. Conf. on Robotics and AutomationAtlanta, GA, pp. 115–120, 1984.Google Scholar
  5. [5]
    A. De Luca, “Dynamic control of robots with joint elasticity,”Proc. 1988 IEEE Int. Conf on Robotics and AutomationPhiladelphia, PA, pp. 152–158, 1988.Google Scholar
  6. [6]
    A. De Luca, “Control properties of robot arms with joint elasticity,” inAnalysis and Control of Nonlinear Systems, C.I. Byrnes, C.F. Martin, R.E. Saeks (Eds.), North-Holland, Amsterdam, NL, pp. 61–70, 1988.Google Scholar
  7. [7]
    A. DeLuca, “Nonlinear regulation of robot motion,”Proc. 1st European Control Conf., Grenoble, F, pp. 1045–1050, 1991.Google Scholar
  8. [8]
    A. De Luca, “Decoupling and feedback linearization of robots with mixed rigid/elastic joints,”Proc. 1996 IEEE Int. Conf on Robotics and AutomationMinneapolis, MN, pp. 816–821, 1996.Google Scholar
  9. [9]
    A. De Luca, A. Isidori, and F. Nicolò, “Control of robot arm with elastic joints via nonlinear dynamic feedback,”Proc. 24th IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, pp. 1671–1679, 1985.Google Scholar
  10. [10]
    A. De Luca and L. Lanari, “Robots with elastic joints are linearizable via dynamic feedback,”Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, pp. 3895–3897, 1995.Google Scholar
  11. [11]
    A. De Luca and S. Panzieri, “Learning gravity compensation in robots: Rigid arms, elastic joints, flexible links,”Int. J. of Adaptive Control and Signal Processingvol. 7, pp. 417–433, 1993.MATHCrossRefGoogle Scholar
  12. [12]
    A. De Luca and G. Ulivi, “Iterative learning control of robots with elastic joints,”Proc. 1992 IEEE Int. Conf. on Robotics and AutomationNice, F, pp. 1920–1926, 1992.Google Scholar
  13. [13]
    C. De Simone and F. Nicolò, “On the control of elastic robots by feedback decoupling,”IASTED Int. J. of Robotics and Automationvol. 1, no. 2, pp. 64–69, 1986.Google Scholar
  14. [14]
    M.G. Forrest-Barlach and S.M. Babcock, “Inverse dynamics position control of a compliant manipulator,”IEEE J. of Robotics and Automationvol. 3, pp. 75–83, 1987.CrossRefGoogle Scholar
  15. [15]
    M.C. Good, L.M. Sweet, and K.L. Strobel, “Dynamic models for control system design of integrated robot and drive systems,”ASME J. of Dynamic Systems, Measurement, and Controlvol. 107, pp. 53–59, 1985.CrossRefGoogle Scholar
  16. [16]
    W.M. Grimm, “Robustness analysis of nonlinear decoupling for elasticjoint robots,”IEEE Trans, on Robotics and Automationvol. 6, pp. 373–377, 1990.CrossRefGoogle Scholar
  17. [17]
    M.G. Hollars and R.H. Cannon, “Experiments on the end-point control of a two-link robot with elastic drives,”Proc. AIAA Guidance, Navigation and Control Conf, Williamsburg, VA, pp. 19–27, 1986.Google Scholar
  18. [18]
    A. Isidori, C.H. Moog, and A. De Luca, “A sufficient condition for full linearization via dynamic state feedback,”Proc. 25th IEEE Conf. on Decision and Control, Athina, GR, pp. 203–208, 1986.Google Scholar
  19. [19]
    K.P. Jankowski and H.A. ElMaraghy, “Dynamic control of flexible joint robots with constrained end-effector motion,”Prepr. 3rd IFAC Symp. on Robot Control, Vienna, A, pp. 345–350, 1991.Google Scholar
  20. [20]
    K.P. Jankowski and H. Van Brussel, “An approach to discrete inverse dynamics control of flexible-joint robots,”IEEE Trans, on Robotics and Automation, vol. 8, pp. 651–658, 1992.CrossRefGoogle Scholar
  21. [21]
    R. Kelly, R. Ortega, A. Ailon, and A. Loria, “Global regulation of flexible joint robots using approximate differentiation,”IEEE Trans, on Automatic Control,vol. 39, pp. 1222–1224, 1994.MATHCrossRefGoogle Scholar
  22. [22]
    K. Khorasani, “Adaptive control of flexible-joint robots,”IEEE Trans, on Robotics and Automation,vol. 8, pp. 250–267, 1992.CrossRefGoogle Scholar
  23. [23]
    K. Khorasani and P.V. Kokotovic, “Feedback linearization of a flexible manipulator near its rigid body manifold,”Systems & Control Lett,vol. 6, pp. 187–192, 1985.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    H.B. Kuntze and A.H.K. Jacubasch, “Control algorithms for stiffening an elastic industrial robot,”IEEE J. of Robotics and Automation,vol. 1, pp. 71–78, 1985.Google Scholar
  25. [25]
    L. Lanari and J.T. Wen, “Feedforward calculation in tracking control of flexible robots,”Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, pp. 1403–1408, 1991.Google Scholar
  26. [26]
    S.H. Lin, S. Tosunoglu, and D. Tesar, “Control of a six-degree-of-freedom flexible industrial manipulator,”IEEE Control Systems Mag.,vol. 11, no. 2, pp. 24–30, 1991.CrossRefGoogle Scholar
  27. [27]
    R. Lozano and B. Brogliato, “Adaptive control of robot manipulators with flexible joints,”IEEE Trans, on Automatic Control,vol. 37, pp. 174–181, 1992.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    R. Marino and S. Nicosia, “On the feedback control of industrial robots with elastic joints: A singular perturbation approach,” rep. R-84.01, Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma “Tor Vergata”, 1984.Google Scholar
  29. [29]
    R. Marino and S. Nicosia, “Singular perturbation techniques in the adaptive control of elastic robots,”Prepr. 1st IFAC Symp. on Robot Control, Barcelona, E, pp. 11–16, 1985.Google Scholar
  30. [30]
    J.K. Mills, “Control of robotic manipulators with flexible joints during constrained motion task execution,”Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, pp. 1676–1681, 1989.Google Scholar
  31. [31]
    S.H. Murphy, J.T. Wen, and G.N. Saridis, “Simulation and analysis of flexibly jointed manipulators,”Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HI, pp. 545–550, 1990.Google Scholar
  32. [32]
    S. Nicosia, F. Nicolò, and D. Lentini, “Dynamical control of industrial robots with elastic and dissipative joints,”Proc. 8th IFAC World Congr., Kyoto, J, pp. 1933–1939, 1981.Google Scholar
  33. [33]
    S. Nicosia and P. Tomei, “On the feedback linearization of robots with elastic joints,”Proc. 27th IEEE Conf on Decision and Control, Austin, TX, pp. 180–185, 1988.Google Scholar
  34. [34]
    S. Nicosia and P. Tomei, “A method for the state estimation of elastic joint robots by global position measurements,”Int. J. of Adaptive Control and Signal Processing,vol. 4, pp. 475–486, 1990.MATHCrossRefGoogle Scholar
  35. [35]
    S. Nicosia and P. Tomei, “A method to design adaptive controllers for flexible joint robots,”Proc. 1992 IEEE Int. Conf on Robotics and Automation,Nice, F, pp. 701–706, 1992.Google Scholar
  36. [36]
    S. Nicosia and P. Tomei, “Design of global tracking controllers for flexible joint robots,”J. of Robotic Systems,vol. 10, pp. 835–846,1993.MATHCrossRefGoogle Scholar
  37. [37]
    S. Nicosia and P. Tomei, “A tracking controller for flexible joint robots using only link position feedback,”IEEE Trans, on Automatic Control,vol. 40, pp. 885–890, 1995.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    S. Nicosia, P. Tomei, and A. Tornambè, “A nonlinear observer for elastic robots,”IEEE J. of Robotics and Automationvol. 4, pp. 45–52, 1988.CrossRefGoogle Scholar
  39. [39]
    E. Rivin,Mechanical Design of RobotsMcGraw-Hill, New York, NY, 1988.Google Scholar
  40. [40]
    H. Sira-Ramirez and M.W. Spong, “Variable structure control of flexible joint manipulators,”IASTED Int. J. of Robotics and Automationvol. 3, no. 2, pp. 57–64, 1988.Google Scholar
  41. [41]
    M.W. Spong, “Modeling and control of elastic joint robots,”ASME J. of Dynamic Systems, Measurement, and Controlvol. 109, pp. 310–319, 1987.MATHCrossRefGoogle Scholar
  42. [42]
    M.W. Spong, “Adaptive control of flexible joint manipulators,”Systems & Control Lettvol. 13, pp. 15–21, 1989.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    M.W. Spong, “On the force control problem for flexible joint manipulators,”IEEE Trans, on Automatic Controlvol. 34, pp. 107–111, 1989.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    M.W. Spong, K. Khorasani, and P.V. Kokotovic, “An integral manifold approach to the feedback control of flexible joint robots,”IEEE J. of Robotics and Automationvol. 3, pp. 291–300, 1987.CrossRefGoogle Scholar
  45. [45]
    H. Springer, P. Lugner, and K. Desoyer, “Equations of motion for manipulators including dynamic effects of active elements,”Proc. 1st IFAC Symp. on Robot Control, Barcelona, E, pp. 425–430, 1985.Google Scholar
  46. [46]
    L.M. Sweet and M.C. Good, “Redefinition of the robot motion control problem,”IEEE Control Systems Magvol. 5, no. 3, pp. 18–24, 1985.CrossRefGoogle Scholar
  47. [47]
    P. Tomei, “An observer for flexible joint robots,”IEEE Trans, on Automatic Controlvol. 35, pp. 739–743, 1990.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    P. Tomei, “A simple PD controller for robots with elastic joints,”IEEE Trans, on Automatic Controlvol. 36, pp. 1208–1213, 1991.MathSciNetCrossRefGoogle Scholar
  49. [49]
    P. Tomei, “Tracking control of flexible joint robots with uncertain parameters and disturbances,”IEEE Trans, on Automatic Controlvol. 39, pp. 1067–1072, 1994.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1996

Authors and Affiliations

  • Carlos Canudas de Wit
    • 1
  • Bruno Siciliano
    • 2
  • Georges Bastin
    • 3
  1. 1.Laboratoire d’Automatique de Grenoble, École Nationale Supérieure d’Ingénieurs Electriciens de Grenoble Rue de la Houille BlancheDomaine UniversitaireSaint-Martin-d’HèresFrance
  2. 2.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly
  3. 3.Centre d’Ingénierie des Systèmes, d’Automatique et de Mécanique AppliquéeUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations