Skip to main content

Motion and force control

  • Chapter
  • First Online:
Theory of Robot Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter we deal with the motion control problem for situations in which the robot manipulator end effector is in contact with the environment. Many robotic tasks involve intentional interaction between the manipulator and the environment. Usually, the end effector is required to follow in a stable way the edge or the surface of a workpiece while applying prescribed forces and torques. The specific feature of robotic problems such as polishing, deburring, or assembly, demands control also of the exchanged forces at the contact. These forces may be explicitly set under control or just kept limited in a indirect way, by controlling the end-effector position. In any case, force specification is often complemented with a requirement concerning the end-effector motion so that the control problem has in general hybrid (mixed) objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aicardi, G. Cannata, and G. Casalino, “Hybrid learning control for constrained manipulators,” Advanced Robotics, vol. 6, pp. 69–94, 1992.

    Article  Google Scholar 

  2. C. H. An and J.M. Hollerbach, “The role of dynamic models in Cartesian force control of manipulators,” Int. J. of Robotics Research, vol. 8, no. 4, pp. 51–72, 1989.

    Article  Google Scholar 

  3. R.J. Anderson and M. W. Spong, “Hybrid impedance control of robotic manipulators,” IEEE J. of Robotics and Automation, vol. 4, pp. 549- 556, 1988.

    Article  Google Scholar 

  4. S. Arimoto, Y.H. Liu, and T. Naniwa, “Model-based adaptive hybrid control for geometrically constrained robots,” Proc. 1993 IEEE Int. Conf. on Robotics and Automation Atlanta, GA, pp. 618–623, 1993.

    Google Scholar 

  5. S. Arimoto, T. Naniwa, and T. Tsubouchi, “Principle of orthogonaliza tion for hybrid control of robot manipulators,” in Robotics, Mechatronics and Manufacturing Systems, T. Takamori and K. Tsuchiya (Eds.), Elsevier, Amsterdam, NL, 1993.

    Google Scholar 

  6. B. Brogliato and P. Orhant, “On the transition phase in robotics: Impact models, dynamics and control,” Proc. 1994 IEEE Int. Conf. on Robotics and Automation San Diego, CA, pp. 346–351, 1994.

    Google Scholar 

  7. H. Bruyninckx, S. Dumey, S. Dutré, and J. De Schutter, “Kinematic models for model-based compliant in the presence of uncertainty,” Int. J. of Robotics Research, vol. 14, pp. 465–482, 1995.

    Article  Google Scholar 

  8. C. Canudas de Wit and B. Brogliato, “Direct adaptive impedance control,” Postpr. 4th IFAC Symp. on Robot Control, Capri, I, pp. 345–350, 1994.

    MATH  Google Scholar 

  9. R. Carelli, R. Kelly, and R. Ortega, “Adaptive force control of robot manipulators,” Int. J. of Control, vol. 52, pp. 37–54, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Chiaverini and L. Sciavicco, “The parallel approach to force/position control of robotic manipulators,” IEEE Trans, on Robotics and Automation, vol. 9, pp. 361–373, 1993.

    Article  Google Scholar 

  11. S. Chiaverini, B. Siciliano, and L. Villani, “Force/position regulation of compliant robot manipulators,” IEEE Trans, on Automatic Control, vol. 39, pp. 647–652, 1994.

    Article  MATH  Google Scholar 

  12. R. Colbaugh, H. Seraji, and K. Glass, “Direct adaptive impedance control of robot manipulators,” J. of Robotic Systems, vol. 10, pp. 217- 248, 1993.

    Google Scholar 

  13. A. De Luca and C. Manes, “Hybrid force-position control for robots in contact with dynamic environments,” Proc. 3rd IFAC Symp. on Robot Control, Vienna, A, pp. 177–182, 1991.

    Google Scholar 

  14. A. De Luca and C. Manes, “Modeling robots in contact with a dynamic environment,” IEEE Trans, on Robotics and Automation, vol. 10, pp. 542–548, 1994.

    Article  Google Scholar 

  15. A. De Luca, C. Manes, and F. Nicolò, “A task space decoupling approach to hybrid control of manipulators,” Proc. 2nd IFAC Symp. on Robot Control, Karlsruhe, D, pp. 157–162, 1988.

    Google Scholar 

  16. A. De Luca, C. Manes, and G. Ulivi, “Robust hybrid dynamic control of robot arms,” Proc. 28th IEEE Conf on Decision and Control, Tampa, FL, pp. 2641–2646, 1989.

    Google Scholar 

  17. J. De Schutter and H. Van Brüssel, “Compliant robot motion I. A formalism for specifying compliant motion tasks,” Int. J. of Robotics Research, vol. 7, no. 4, pp. 3–17, 1988.

    Article  Google Scholar 

  18. J. De Schutter and H. Van Brüssel, “Compliant robot motion II. A control approach based on external control loops,” Int. J. of Robotics Research, vol. 7, no. 4, pp. 18–33, 1988.

    Article  Google Scholar 

  19. J. Duffy, “The fallacy of modern hybrid control theory that is based on ’orthogonal complements’ of twist and wrench spaces,” J. of Robotic Systems, vol. 7, pp. 139–144, 1990.

    Article  Google Scholar 

  20. S.D. Eppinger and W.P. Seering, “Introduction to dynamic models for robot force control,” IEEE Control Systems Mag., vol. 7, no. 2, pp. 48–52, 1987.

    Article  Google Scholar 

  21. S.D. Eppinger and W.P. Seering, “Understanding bandwidth limitations on robot force control,” Proc. 1987 IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, pp. 904–909, 1987.

    Google Scholar 

  22. A. Fedele, A. Fioretti, C. Manes, and G. Uhvi, “On-line processing of position and force measures for contour identification and robot control,” Proc. 1993IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, vol. 1, pp. 369–374, 1993.

    Google Scholar 

  23. G. Ferretti, G. Magnani, and P. Rocco, “On the stability of integral force control in case of contact with stiff surfaces,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 117, pp. 547–553, 1995.

    Article  MATH  Google Scholar 

  24. N. Hogan, “Impedance control: An approach to manipulation: Parts I—III,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1–24, 1985.

    Article  MATH  Google Scholar 

  25. N. Hogan, “On the stability of manipulators performing contact tasks,” IEEE J. of Robotics and Automation, vol. 4, pp. 677–686, 1988.

    Article  Google Scholar 

  26. R.K. Kankaanranta and H.N. Koivo, “Dynamics and simulation of compliant motion of a manipulator,” IEEE J. of Robotics and Automation, vol. 4, pp. 163–173, 1988.

    Article  Google Scholar 

  27. H. Kazerooni, “Contact instability of the direct drive robot when constrained by a rigid environment,” IEEE Trans, on Automatic Control vol. 35, pp. 710–714, 1990.

    Article  MATH  Google Scholar 

  28. H. Kazerooni, T.B. Sheridan, and P.K. Houpt, “Robust compliant motion for manipulators. Part I: The fundamental concepts of compliant motion,” IEEE J. of Robotics and Automation, vol. 2, pp. 83–92, 1986.

    Article  Google Scholar 

  29. R. Kelly, R. Carelli, M. Amestegui, and R. Ortega, Adaptive impedance control of robot manipulators,” lASTED Int. J. of Robotics and Automation, vol. 4, no. 3, pp. 134–141, 1989.

    Google Scholar 

  30. O. Khatib, “A unified approach to motion and force control of robot manipulators: The operational space formulation,” IEEE J. of Robotics and Automation, vol. 3, pp. 43–53, 1987.

    Article  Google Scholar 

  31. H. Lipkin and J. Duffy, “Hybrid twist and wrench control for a robotic manipulator,” ASME J. of Mechanism, Transmissions, and Automation in Design, vol. 110, pp. 138–144, 1988.

    Article  Google Scholar 

  32. R. Lozano and B. Brogliato, “Adaptive hybrid force-position control for redundant manipulators,” IEEE Trans, on Automatic Control, vol. 37, pp. 1501–1505, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  33. W.-S. Lu and Q.-H. Meng, “Impedance control with adaptation for robotic manipulators,” IEEE Trans, on Robotics and Automation, vol. 7, pp. 408–415, 1991.

    Article  Google Scholar 

  34. Z. Lu and A.A. Goldenberg, “Robust impedance control and force regulation: Theory and experiments,” Int. J. of Robotics Research, vol. 14, pp. 225–254, 1995.

    Article  Google Scholar 

  35. M.T. Mason, “Compliance and force control for computer controlled manipulators,” IEEE Trans, on Systems, Man, and Cybernetics, vol. 11, pp. 418–432, 1981.

    Article  Google Scholar 

  36. N.H. McClamroch and D. Wang, “Feedback stabilization and tracking in constrained robots,” IEEE Trans, on Automatic Control, vol. 33, pp. 419–426, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  37. J.K. Mills and A.A. Goldenberg, “Force and position control of manipulators during constrained motion tasks,” IEEE Trans, on Robotics and Automation, vol. 5, pp. 30–46, 1989.

    Article  Google Scholar 

  38. J.K. Mills and D.M. Lokhorst, “Control of robotic manipulators during general task execution: A discontinuous control approach,” Int. J. of Robotics Research, vol. 12, pp. 146–163, 1993.

    Article  Google Scholar 

  39. R. Paul and B. Shimano, “Compliance and control,” Proc. 1976 Joint Automatic Control Conf., San Francisco, CA, pp. 694–699, 1976.

    Google Scholar 

  40. M.A. Peshkin, “Programmed compliance for error corrective assembly,” IEEE Trans, on Robotics and Automation, vol. 6, pp. 473–482, 1990.

    Article  Google Scholar 

  41. M.H. Raibert and J.J. Craig, “Hybrid position/force control of manipulators,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 102, pp. 126–133, 1981.

    Article  Google Scholar 

  42. J. K. Salisbury, “Active stiffness control of a manipulator in Cartesian coordinates,” Proc. 19th IEEE Conf on Decision and Control, Albuquerque, NM, pp. 95–100, 1980.

    Google Scholar 

  43. B. Siciliano and L. Villani, “An adaptive force/position regulator for robot manipulators,” Int. J. of Adaptive Control and Signal Processing, vol. 7, pp. 389–403, 1993.

    Article  MATH  Google Scholar 

  44. B. Siciliano and L. Villani, “A passivity-based approach to force regulation and motion control of robot manipulators,” Automatica, vol. 32, pp. 443–447, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Siciliano and L. Villani, “A force/position regulator for robot manipulators without velocity measurements,” 1996IEEE Int. Conf on Robotics and Automation, Minneapolis, MN, pp. 2567–2572, 1996.

    Google Scholar 

  46. B. Sicihano and L. Villani, “Adaptive compliant control of robot manipulators,” Control Engineering Practice, vol. 4, no. 5, 1996.

    Google Scholar 

  47. J.-J.-E. Slotine and W. Li, “Adaptive strategies in constrained manipulation,” Proc. 1987 IEEE Int. Conf on Robotics and Automation, Raleigh, NC, pp. 595–601, 1987.

    Google Scholar 

  48. C.-Y. Su, T.-R Leung, and Q.-J. Zhou, “Force/motion control of constrained robots using sliding mode,” IEEE Trans, on Automatic Control, vol. 37, pp. 668–672, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Volpe and P. Khosla, “A theoretical and experimental investigation of impact control for manipulators,” Int. J. of Robotics Research, vol. 12, pp. 351–365, 1993.

    Article  Google Scholar 

  50. R. Volpe and P. Khosla, “A theoretical and experimental investigation of explicit force control strategies for manipulators,” IEEE Trans, on Automatic Control, vol. 38, pp. 1634–1650, 1993.

    Article  MathSciNet  Google Scholar 

  51. J. Wen and S. Murphy, “Stability analysis of position and force control for robot arms,” IEEE Trans, on Automatic Control, vol. 36, pp. 365- 371, 1991.

    Google Scholar 

  52. D.E. Whitney, “Force feedback control of manipulator fine motions,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 99, pp. 91–97, 1977.

    Article  Google Scholar 

  53. D.E. Whitney, “Quasi-static assembly of compliantly supported rigid parts,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 104, pp. 65–77, 1982.

    Article  MATH  Google Scholar 

  54. D.E. Whitney, “Historical perspective and state of the art in robot force control,” Int. J. of Robotics Research, vol. 6, no. 1, pp. 3–14, 1987.

    Article  Google Scholar 

  55. L.S. Wilfinger, J.T. Wen, and S.H. Murphy, “Integral force control with robustness enhancement,” IEEE Control Systems Mag., vol. 14, no. 1, pp. 31–40, 1994.

    Article  Google Scholar 

  56. B. Yao and M. Tomizuka, “Adaptive control of robot manipulators in constrained motion — Controller design,” ASME J. of Dynamic Systems, Measurement, and Control, vol. 117, pp. 320–328, 1995.

    Article  MATH  Google Scholar 

  57. T. Yoshikawa, “Dynamic hybrid position/force control of robot manipulators — Description of hand constraints and calculation of joint driving force,” IEEE J. of Robotics and Automation, vol. 3, pp. 386- 392, 1987.

    Article  Google Scholar 

  58. T. Yoshikawa, T. Sugie, and M. Tanaka, “Dynamic hybrid position/force control of robot manipulators — Controller design and experiment,” IEEE J. of Robotics and Automation, vol. 4, pp. 699–705, 1988.

    Article  Google Scholar 

  59. X. Yun, “Dynamic state feedback control of constrained robot manipulators,” Proc. 27th IEEE Conf on Decision and Control, Austin, TX, pp. 622–626, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this chapter

Cite this chapter

De Luca, A., Siciliano, B. (1996). Motion and force control. In: de Wit, C.C., Siciliano, B., Bastin, G. (eds) Theory of Robot Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-1501-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1501-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1503-8

  • Online ISBN: 978-1-4471-1501-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics