Advertisement

Task space control

  • Carlos Canudas de Wit
  • Bruno Siciliano
  • Georges Bastin
Part of the Communications and Control Engineering book series (CCE)

Abstract

In the above joint space control schemes, it was assumed that the reference trajectory is available in terms of the time history of joint positions, velocities and accelerations. On the other hand, robot manipulator motions are typically specified in the task space in terms of the time history of end-effector position, velocity and acceleration. This chapter is devoted to control of rigid robot manipulators in the task space.

Keywords

Task Space Joint Velocity Kinematic Control Inverse Kinematic Solution Redundancy Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Baillieul, “Kinematic programming alternatives for redundant manipulators,” Proc. 1985 IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, pp. 722–728, 1985Google Scholar
  2. [2]
    T.L. Boullion and P.L. Odell, Generalized Inverse Matrices Wiley, New York, NY, 1971.zbMATHGoogle Scholar
  3. [3]
    P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed— loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,” Int. J. of Robotics Research vol. 10, pp. 410–425, 1991.CrossRefGoogle Scholar
  4. [4]
    P. Chiacchio and B. Siciliano, “Achieving singularity robustness: An inverse kinematic solution algorithm for robot control,” in Robot Control: Theory and Applications lEE Control Engineering Series 36, K. Warwick and A. Pugh (Eds.), Peter Peregrinus, Herts, UK, pp. 149- 156, 1988.Google Scholar
  5. [5]
    P. Chiacchio and B. Siciliano, “A closed-loop Jacobian transpose scheme for solving the inverse kinematics of nonredundant and redundant robot wrists,” J. of Robotic Systems vol. 6, pp. 601–630, 1989zbMATHCrossRefGoogle Scholar
  6. [6]
    S. Chiaverini, “Inverse differential kinematics of robotic manipulators at singular and near-singular configurations,” 1992 IEEE Int. Conf on Robotics and Automation — Tutorial on ’Redundancy: Performance Indices J Singularities Avoidance, and Algorithmic Implementations’ Nice, F, May 1992.Google Scholar
  7. [7]
    S. Chiaverini, “Estimate of the two smallest singular values of the Jacobian matrix: Application to damped least-squares inverse kinematics,” J. of Robotic Systems vol. 10, pp. 991–1008, 1993zbMATHCrossRefGoogle Scholar
  8. [8]
    S. Chiaverini, O. Egeland, and R.K. Kanestrom, “Achieving user- defined accuracy with damped least-squares inverse kinematics,” Proc. 5th Int. Conf. on Advanced Robotics Pisa, I, pp. 672–677, 1991Google Scholar
  9. [9]
    S. Chiaverini, O. Egeland, J.R. Sagli, and B. Siciliano, “User-defined accuracy in the augmented task space approach for redundant manipulators,” Laboratory Robotics and Automation vol. 4, pp. 59–67, 1992Google Scholar
  10. [10]
    S. Chiaverini, L. Sciavicco, and B. Siciliano, “Control of robotic systems through singularities,” in Advanced Robot Control Lecture Notes in Control and Information Science, vol. 162, C. Canudas de Wit (Ed.), Springer-Verlag, Berlin, D, pp. 285–295, 1991Google Scholar
  11. [11]
    S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution for the human-arm-like manipulator,” Robotics and Autonomous Systems vol. 8, pp. 239–250, 1991CrossRefGoogle Scholar
  12. [12]
    S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator,” IEEE Trans, on Control Systems Technology vol. 2, pp. 123–134, 1994CrossRefGoogle Scholar
  13. [13]
    A. De Luca, “Zero dynamics in robotic systems,” in Nonlinear Synthesis Progress in Systems and Control Series, C.I. Byrnes and A. Kurzhanski (Eds.), Birkhauser, Boston, MA, 1991Google Scholar
  14. [14]
    A. De Luca and G. Oriolo, “Issues in acceleration resolution of robot redundancy,” Prepr. 3rd IFAC Symp. on Robot Control Wien, A, pp. 665–670, 1991Google Scholar
  15. [15]
    A. De Luca, G. Oriolo, and B. Siciliano,Robot redundancy resolution at the acceleration level,” Laboratory Robotics and Automation vol. 4, pp. 97–106, 1992Google Scholar
  16. [16]
    O. Egeland, “Task-space tracking with redundant manipulators,” IEEE J. of Robotics and Automation vol. 3, pp. 471–475, 1987CrossRefGoogle Scholar
  17. [17]
    O. Egeland, J.R. Sagli, I. Spangelo, and S. Chiaverini, “A damped least-squares solution to redundancy resolution,” Proc. 1991 IEEE Int. Conf. on Robotics and Automation Sacramento, CA, pp. 945–950, 1991Google Scholar
  18. [18]
    P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant manipulators,” J. of Robotic Systems vol. 6, pp. 133–148, 1989zbMATHCrossRefGoogle Scholar
  19. [19]
    O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. of Robotics and Automation vol. 3, pp. 43–53, 1987CrossRefGoogle Scholar
  20. [20]
    C.A. Klein and C.H. Huang, “Review of pseudoinverse control for use with kinematically redundant manipulators,” IEEE Trans, on Systems, Man, and Cybernetics vol. 13, pp. 245–250, 1983Google Scholar
  21. [21]
    A. Liégeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans, on Systems, Man, and Cybernetics vol. 7, pp. 868–871, 1977zbMATHCrossRefGoogle Scholar
  22. [22]
    S.K. Lin, “Singularity of a nonlinear feedback control scheme for robots,” IEEE Trans, on Systems, Man, and Cybernetics vol. 19, pp. 134–139, 1989CrossRefGoogle Scholar
  23. [23]
    J.Y.S. Luh, M.W. Walker, and R.P.C. Paul, “Resolved-acceleration control of mechanical manipulators,” IEEE Trans, on Automatic Control vol. 25, pp. 468–474, 1980zbMATHCrossRefGoogle Scholar
  24. [24]
    A.A. Maciejewski, “Kinetic limitations on the use of redundancy in robotic manipulators,” IEEE Trans, on Robotics and Automation vol. 7, pp. 205–210, 1991CrossRefGoogle Scholar
  25. [25]
    A.A. Maciejewski and C.A. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. of Robotics Research vol. 4, no. 3, pp. 109–117, 1985CrossRefGoogle Scholar
  26. [26]
    A.A. Maciejewski and C.A. Klein, “Numerical filtering for the operation of robotic manipulators through kinematically singular configurations,” J. of Robotic Systems vol. 5, pp. 527–552, 1988CrossRefGoogle Scholar
  27. [27]
    Y. Nakamura, Advanced Robotics: Redundancy and Optimization, Addison-Wesley, Reading, MA, 1991.Google Scholar
  28. [28]
    Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,” ASME J. of Dynamic Systems, Measurement, and Control vol. 108, pp. 163–171, 1986zbMATHCrossRefGoogle Scholar
  29. [29]
    Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” Int. J. of Robotics Research vol. 6, no. 2, pp. 3–15, 1987CrossRefGoogle Scholar
  30. [30]
    Z. Novakovic and B. Siciliano, “A new second-order inverse kinematics solution for redundant manipulators,” in Advances in Robot Kinematics S. Stifter and J. Lenarcic (Eds.), Springer-Verlag, Wien, A, pp. 408–415, 1991Google Scholar
  31. [31]
    C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task Function Approach Oxford Engineering Science Series, vol. 22, Clarendon Press, Oxford, UK, 1991Google Scholar
  32. [32]
    L. Sciavicco and B. Siciliano, “Coordinate transformation: A solution algorithm for one class of robots,” IEEE Trans, on Systems, Man, and Cybernetics vol. 16, pp. 550–559, 1986zbMATHCrossRefGoogle Scholar
  33. [33]
    L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse kinematic problem for redundant manipulators,” IEEE J. of Robotics and Automation vol. 4, pp. 403–410, 1988CrossRefGoogle Scholar
  34. [34]
    L. Sciavicco and B. Siciliano, “The augmented task space approach for redundant manipulator control,” Proc. 2nd IFAC Symp. on Robot Control Karlsruhe, D, pp. 125–129, 1988Google Scholar
  35. [35]
    L. Sciavicco and B. SicilianoModeling and Control of Robot Manipulators, McGraw-Hill, New York, NY, 1996Google Scholar
  36. [36]
    H. Seraji, “Configuration control of redundant manipulators: Theory and implementation,” IEEE Trans, on Robotics and Automation vol. 5, pp. 472–490, 1989CrossRefGoogle Scholar
  37. [37]
    B. Siciliano, “A closed-loop inverse kinematic scheme for on-line joint based robot control,” Robotica vol. 8, pp. 231–243, 1990CrossRefGoogle Scholar
  38. [38]
    B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” J. of Intelligent and Robotic Systems vol. 3, pp. 201–212, 1990CrossRefGoogle Scholar
  39. [39]
    B. Siciliano, “Solving manipulator redundancy with the augmented task space method using the constraint Jacobian transpose,” 1992 IEEE Int. Conf. on Robotics and Automation — Tutorial on ‘Redundancy: Performance Indices, Singularities Avoidance, and Algorithmic Implementations, ’ Nice, F, May 1992Google Scholar
  40. [40]
    B. Siciliano and J.-J.E. Slotine, “A general framework for managing multiple tasks in highly redundant robotic systems,” Proc. 5th Int. Conf on Advanced Robotics, Pisa, I, pp. 1211–1216, 1991.Google Scholar
  41. [41]
    M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manipulators,” ASME J. of Dynamic Systems, Measurement, and Control vol. 102, pp. 119–125, 1981CrossRefGoogle Scholar
  42. [42]
    C.W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,” IEEE Trans, on Systems, Man, and Cybernetics vol. 16, pp. 93–101, 1986.zbMATHCrossRefGoogle Scholar
  43. [43]
    D.E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans, on Man-Machine Systems vol. 10, pp. 47–53, 1969.CrossRefGoogle Scholar
  44. [44]
    T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. of Robotics Research vol. 4, no. 2, pp. 3–9, 1985.MathSciNetCrossRefGoogle Scholar
  45. [45]
    J.S.-C. Yuan, “Closed-loop manipulator control using quaternion feedback,” IEEE J. of Robotics and Automation vol. 4, pp. 434–440, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1996

Authors and Affiliations

  • Carlos Canudas de Wit
    • 1
  • Bruno Siciliano
    • 2
  • Georges Bastin
    • 3
  1. 1.Laboratoire d’Automatique de Grenoble, École Nationale Supérieure d’Ingénieurs Electriciens de Grenoble Rue de la Houille BlancheDomaine UniversitaireSaint-Martin-d’HèresFrance
  2. 2.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly
  3. 3.Centre d’Ingénierie des Systèmes, d’Automatique et de Mécanique AppliquéeUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations