Skip to main content

Abstract

An understanding of the basic physiological properties and innervation of the human bladder is likely to be the keystone for the design of rational pharmacological treatments of bladder dysfunction. Unfortunately studies on smooth muscles in general have lagged behind those on striated muscles, although the growth in our understanding has blossomed in the last two decades. It has become apparent that smooth muscles are extremely varied in their properties, and show many very interesting features which make them exciting to study in their own right. As a result of our increased knowledge, unexpected avenues have opened up which may lead to development of new clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y, Tomita T (1968) Cable properties of smooth muscle. J Physiol (Lond) 196:87–100.

    CAS  Google Scholar 

  • Aickin CC, Brading AF (1983) Towards an estimate of chloride permeability in the smooth muscle of guinea-pig vas deferens. J Physiol (Lond) 336:179–197.

    CAS  Google Scholar 

  • Aim P, Alumets J, Brodin E etal. (1978) Peptidergic (substance P) nerves in the genito-urinary tract. Neuroscience 3:419–425.

    Google Scholar 

  • Ambache N, Zar MA (1970) Non-cholinergic transmission by post-ganglionic motor neurons in the mammalian bladder. J Physiol (Lond) 210:761–783.

    CAS  Google Scholar 

  • Askoy MO, Murphy RA, Kamm KE (1982) Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am J Physiol 242:C109-C116.

    Google Scholar 

  • Bennett MR (1972) Autonomic neuromuscular transmission. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718.

    PubMed  CAS  Google Scholar 

  • Brading AF (1981) Ion distribution and mechanisms of transmembrane ion movement. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle: an assessment of current knowledge. Arnold, London, pp 66–92.

    Google Scholar 

  • Brading AF, Aickin CC (1985) Sodium, calcium and contraction in smooth muscle. In: Mironneau J (ed) Calcium regulations in smooth muscle: biochemical and physiological aspects. Inserm, Paris.

    Google Scholar 

  • Brading AF, Sneddon P (1980) Evidence for multiple sources of Ca for activation of the contractile machinery of guinea-pig taenia coli on stimulation with carbachol. Br J Pharmacol 70:229–240.

    PubMed  CAS  Google Scholar 

  • Brading AF, Widdicombe JH (1977) The use of lanthanum to estimate the numbers of extracellular cation-exchanging sites in the guinea-pig taenia coli, and its effects on transmembrane monovalent ion movements. J Physiol (Lond) 266:255–273.

    CAS  Google Scholar 

  • Brading AF, Mostwin JL, Sibley GNA, Speakman MJ (1986) The role of smooth muscle and its possible involvement of diseases of the lower urinary tract. Clin Sci 70 (suppl 14):7S- 13S.

    PubMed  Google Scholar 

  • Burnstock G (1970) Structure of smooth muscle and its innervation. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Arnold, London, pp 1–69.

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509- 581.

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis of distinguishing 2 types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones. Raven, New York.

    Google Scholar 

  • Burnstock G (1981a) Neurotransmitters and trophic factors in the autonomic nervous system. J Physiol (London) 313:1–35.

    CAS  Google Scholar 

  • Burnstock G (1981b) Development of smooth muscle and its innervation. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle: an assessment of current knowledge. Arnold, London, pp 431–457.

    Google Scholar 

  • Burnstock G (1985) Nervous control of smooth muscle by transmitters, cotransmitters and modulators. Experientia 41:869–874.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Dumsday B, Smythe A (1972) Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 44:457–461.

    Google Scholar 

  • Burnstock G, Cocks T, Crowe R, Kasakov L (1978a) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63:125–138.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Kasakov L, Wong A (1978b) Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur J Pharmacol 49:145–149.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Cusack NJ, Hills JM, Mackenzie I, Meghji P (1983) Studies on the stereoselectivity of the P2-purinoceptor. Br J Pharmacol 79:907–913.

    PubMed  CAS  Google Scholar 

  • Caine M (1984) The pharmacology of the urinary tract. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Callahan SM, Creed KE (1981) Electrical and mechanical activity of the isolated lower urinary tract of the guinea-pig. Br J Pharmacol 74:353–358.

    PubMed  CAS  Google Scholar 

  • Callahan SM, Creed KE (1985) The effects of oestrogens on spontaneous activity and responses to phenylephrine of the mammalian urethra. J Physiol (Lond) 358:35–46.

    CAS  Google Scholar 

  • Callahan SM, Creed KE (1986) Non-cholinergic neurotransmission and the effects of peptides on the urinary bladder of guinea-pigs and rabbits. J Physiol (Lond) 374:103–115.

    CAS  Google Scholar 

  • Carpenter FG, Rand SA (1965) Relation of acetylcholine release to responses of the rat urinary bladder. J Physiol (Lond) 180:371–382.

    CAS  Google Scholar 

  • Coburn RF, Ohba M, Tomita T (1975) Recordings of intracellular electrical activity with the sucrose gap method. In: Daniels EE, Paton DM (eds) Methods in pharmacology, vol 3. Plenum, New York, pp 231–245.

    Google Scholar 

  • Coolsaet B (1985) Bladder compliance and detrusor activity during the collection phase. Neurourol Urodyn 4:263–273.

    Google Scholar 

  • Cowan WD, Daniel EE (1983) Human female bladder and its noncholinergic contractile function. J Physiol Pharmacol 61:1236–1246.

    CAS  Google Scholar 

  • Craggs MD, Stephenson JD (1982) The effects of parasympathetic blocking agents on bladder E.M.G.’s and function in conscious and anaesthetised cats. Neuropharmacology 21:695–703.

    PubMed  CAS  Google Scholar 

  • Craggs MD, Stephenson JD (1986) A non-cholinergic urinary bladder mechanism in New World primates. J Physiol (Lond) 377:78p.

    Google Scholar 

  • Craig R, Megerman J (1977) Assembly of smooth muscle myosin in to side polar filaments. J Cell Biol 75:990–996.

    PubMed  CAS  Google Scholar 

  • Creed KE (1971a) Membrane properties of smooth muscle membrane of the guinea-pig urinary bladder. Pfliigers Arch 326:115–126.

    CAS  Google Scholar 

  • Creed KE (1971b) Effects of ions and drugs on the smooth muscle cell membrane of the guinea-pig urinary bladder. Pfliigers Arch 326:127–141.

    CAS  Google Scholar 

  • Creed KE, Ishikawa S, Ito Y (1983) Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol (Lond) 338:149–164.

    CAS  Google Scholar 

  • Daniel EE (1985a) The use of subcellular membrane fractions in analysis of control of smooth muscle function. Experientia 41:905–913.

    PubMed  CAS  Google Scholar 

  • Daniel EE (1985b) Nonadrenergic, noncholinergic (NANC) neuronal excitatory interactions with smooth muscle. In: Grover AK, Daniel EE (eds) Calcium’ and contractility. Humana, Clifton, NJ.

    Google Scholar 

  • Daniel EE Cowan W, Daniel VP (1983) Structural basis for neural and myogenic control of human detrusor. Can J Physiol Pharmacol 61:1247–1273.

    PubMed  CAS  Google Scholar 

  • Dean DM, Downie JW (1978a) Contribution of adrenergic and purinergic neurotransmission to contraction in rabbit detrusor. J. Pharmacol Exp Ther 207:431–445.

    PubMed  CAS  Google Scholar 

  • Dean DM, Downie JW (1978b) Interaction of prostaglandins and A.T.P. in the non-cholinergic neurotransmission in rabbit detrusor. Prostaglandins 16:245–251.

    PubMed  CAS  Google Scholar 

  • Downie JW, Slack BE (1983) Sensitivity to indomethacin of tetrodotoxin-resistant contractions of smooth muscle from the base of rabbit bladder. Br J Pharmacol 79: 334:336.

    Google Scholar 

  • Elbadawi A (1982) Ultrastructure of vesicourethral innervation: 1. Neuroeffector and cell junctions in male internal sphincter. J Urol 128:180–188.

    PubMed  CAS  Google Scholar 

  • Endo M, Kitazawa T, Yagi S etal. (1977) Some properties of Chemically skinned smooth muscle fibres. In: Casteels R, Godfraind T, Rüegg JC (eds) Excitation—contraction coupling in smooth muscle. Elsevier/North Holland, Amsterdam, pp 199–209.

    Google Scholar 

  • Gabella G (1976) The force generated by a visceral smooth muscle. J Physiol (Lond) 263: 199–213.

    CAS  Google Scholar 

  • Gabella G (1978) The structure of the autonomic nervous system. Chapman Hall, London.

    Google Scholar 

  • Gabella G (1981) Structure of smooth muscles. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds). Smooth muscle: an assessment of current knowledge. Arnold, London, pp 1–46.

    Google Scholar 

  • Golenhofen K (1976) Theory of P and T systems for calcium activation in smooth muscle. In: Biilbring E, Shuba MF (eds) Physiology of smooth muscle. Raven, New York, pp 197–202.

    Google Scholar 

  • Golenhofen K (1981) Differentiation of calcium activation processes in smooth muscle using selective agonists. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscles: an assessment of current knowledge. Arnold, London, pp 157–170.

    Google Scholar 

  • Gosling JA, Dixon JS (1975) The structure and innervation of smooth muscle in the wall of the bladder neck and proximal urethra. Br J Urol 47:549–558.

    PubMed  CAS  Google Scholar 

  • Gosling J A, Dixon JS, Humpherson JR (1983) Functional anatomy of the urinary tract. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Griffiths DJ (1980) Urodynamics. Medical physics handbooks 4, Adam Hilgar, Bristol.

    Google Scholar 

  • Griffiths DJ, Van Mastrigt R, van Duyl WA et al. (1979) Active mechanical properties of the smooth muscle of the urinary bladder. Med Biol Eng Comput 17:281–290.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Hirata M, Itoh T etal. (1986) Inositol 1,4,5- trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol (Lond) 370:605–618.

    CAS  Google Scholar 

  • Henderson VE, Roepke MH (1934) The role of acetylcholine in bladder contractile mechanisms and in parasympathetic ganglia. J Pharmacol Exp Ther 51:97–111.

    CAS  Google Scholar 

  • Hills J, Meldrum L, Klarskov P etal. (1984) A novel non- adrenergic, non-cholinergic nerve mediated relaxation of the pig bladder neck; an examination of possible neurotransmitter candidates. Eur J Pharmacol 99:287–293.

    PubMed  CAS  Google Scholar 

  • Hogaboom GK, O’Donnell JP, Fedan JS (1980) Purinergic receptors: arylazide photoaffinity analogue of ATP is a specific pharmacological antagonist of ATP. Science 208:1273.

    PubMed  CAS  Google Scholar 

  • Hokfelt T, Schultzberg M, Elde R et al. (1978) Peptide neurones in peripheral tissues including the urinary tract: immuno- histochemical studies. Acta Pharmacol Toxicol 43:79–89.

    Google Scholar 

  • Hourani SMO (1984) Desensitization of the guinea-pig urinary bladder by the enantiomers of adenylyl s-(β,γ,-methylene) diphosphonate and by Substance P. Br J Pharmacol 82:161–164.

    PubMed  CAS  Google Scholar 

  • Husted S, Sjogren C, Andersson K-E (1980) Role of prostaglandins in the responses of rabbit detrusor to non-chol- inergic, non-adrenergic nerve stimulation and to ATP. Arch Int Pharmocodyn Ther 246:84–97.

    CAS  Google Scholar 

  • Husted S, Sjogren C, Andersson K-E (1983) Direct effects of adenosine and adenine nucleotides on isolated human urinary bladder and their influence on electrically induced contractions. J Urol 130:392–398.

    PubMed  CAS  Google Scholar 

  • Isenberg G, Klockner V (1985) Calcium currents of smooth muscle cells isolated from the urinary bladder of guinea pig: inactivation, conductance and selectivity is controlled by micromolar amounts of [Ca]°. J Physiol (Lond) 358:60p.

    Google Scholar 

  • Ito Y, Kimoto Y (1985) The neural and non-neural mechanisms involved in urethral activity in rabbits. J Physiol (Lond) 367:57–72.

    CAS  Google Scholar 

  • Itoh T, Kuriyama H, Suzuki H (1981) Excitation-contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol (Lond) 321:513–535.

    CAS  Google Scholar 

  • Itoh T, Ueno H, Kuriyama H (1985) Calcium-induced calcium release mechanism in vascular smooth muscles—assessments based on contractions evoked in intact and saponin treated skinned muscles. Experientia 41:989–996.

    PubMed  CAS  Google Scholar 

  • Kasakov L, Burnstock G (1983) The use of the slowly degradable analog, a β-methylene ATP, to produce desensitisation of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol 86:291–294.

    Google Scholar 

  • Klarskov P, Gerstenberg T, Ramirez O etal. (1983) Non-cholinergic, non-adrenergic nerve mediated relaxation of trigone, bladder neck, and urethral smooth muscle in vitro. J Urol 129:848–850.

    PubMed  CAS  Google Scholar 

  • Klarskov P, Gerstenberg T, Hald T (1984) Vasoactive intestinal polypeptide influence on lower urinary tract smooth muscle from human and pig. J Urol 131:1000–1004.

    PubMed  CAS  Google Scholar 

  • Kliick P (1980) The autonomic innervation of the human urinary bladder, bladder neck and urethra: a histochemical study. Anat Rec 198:439–447.

    Google Scholar 

  • Krell RD, McCoy JL, Ridley PT (1981) Pharmacological characterization of the excitatory innervation to the guinea-pig urinary bladder in vitro: evidence for both cholinergic and non-adrenergic, non-cholinergic neurotransmission. Br J Pharmacol 74:15–22.

    PubMed  CAS  Google Scholar 

  • Kurihara S (1975) The effect of procaine on the mechanical and electrical activities of the smooth muscle cells of the guinea- pig urinary bladder. Jpn J Physiol 25:775–788.

    PubMed  CAS  Google Scholar 

  • Kurihara S, Creed KE (1972) Changes in membrane potential of the smooth muscle cells of the guinea-pig urinary bladder in the various environments. Jpn J Physiol 22:667–683.

    PubMed  CAS  Google Scholar 

  • Kuriyama H (1981) Excitation-contraction coupling in various visceral smooth muscles. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle: an assessment of current knowledge. Arnold, London, pp 171–197.

    Google Scholar 

  • Langley JN, Anderson HS (1895) The innervation of the pelvic and adjoining viscera. Part II. The bladder. J Physiol (Lond) 19:71–84.

    CAS  Google Scholar 

  • Levin RM, Wein A J (1981) Effect of vasoactive intestinal peptide on the contractility of the rabbit urinary bladder. Urol Res 9:217–218.

    PubMed  CAS  Google Scholar 

  • Levin RM, Wein AJ (1982) Response of the in vitro whole bladder (rabbit) preparation to autonomic agonists. J Urol 128: 1087–1090.

    PubMed  CAS  Google Scholar 

  • Levin RM, Jacoby R, Wein A J (1981) Effect of adenosine triphosphate on contractility and adenosine triphosphatase activity of the rabbit urinary bladder. Mol Pharmacol 19:525- 528.

    PubMed  CAS  Google Scholar 

  • Levin RM, Jacoby R, Wein AJ (1982) High affinity, divalent, ion-specific binding of tritiated A.T.P. to homogenate derived from rabbit urinary bladder. Mol Pharmacol 23:1–7.

    Google Scholar 

  • Mackenzie I, Burnstock G (1984) Neuropeptide action on the guinea-pig bladder; a comparison with the effects of field stimulation and ATP. Eur J Pharmacol 105:85–94.

    PubMed  CAS  Google Scholar 

  • Marston SB, Smith CWJ (1985) The thin filaments of smooth muscles. J Muscle Res Cell Motil 6:669–708.

    PubMed  CAS  Google Scholar 

  • Morgan JP, Morgan KG (1984) Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol (Lond) 351:155–167.

    CAS  Google Scholar 

  • Mostwin JL (1985) Receptor operated intracellular stores in the smooth muscle of the guinea-pig bladder. J Urol 133:900–905.

    PubMed  CAS  Google Scholar 

  • Mostwin JL (1986) Electrical and mechanical aspects of bladder contractility. DPhil Thesis, Oxford.

    Google Scholar 

  • Nergardh A, Boreus LO (1972) Autonomic receptor function in the lower urinary tract of man and cat. Scand J Urol Nephrol 6:32–36.

    PubMed  CAS  Google Scholar 

  • Nergardh A, Kinn A-C (1983) Neurotransmission in activation of the contractile response in the human urinary bladder. Scand J Urol Nephrol 17:153–157.

    PubMed  CAS  Google Scholar 

  • Riiegg JC, Pfitzer G (1985) Modulation of calcium sensitivity in guinea-pig taenia coli: skinned fiber studies. Experientia 41:997–1001.

    Google Scholar 

  • Satake N, Shibata S, Veda S (1984) Phentolamine-induced rhythmic contractions in bladder detrusor muscle of guinea- pig. Br J Pharmacol 83:965–971.

    PubMed  CAS  Google Scholar 

  • Sibley GNA (1984a) The response of the bladder to lower urinary tract obstruction. DM Thesis, Oxford.

    Google Scholar 

  • Sibley GNA (1984b) A comparison of spontaneous and nerve- mediated activity in bladder muscle from man, pig and rabbit. J Physiol (Lond) 354:431–443.

    CAS  Google Scholar 

  • Sibley GNA (1985) An experimental model of detrusor instability in the obstructed pig. Br J Urol 57:292–298.

    PubMed  CAS  Google Scholar 

  • Sjögren C, Andersson K-H, Husted S (1982a) Contractile effects of some peptides on the isolated urinary bladder of guinea- pig, rabbit and rat. Acta Pharmacol Toxicol 500:175–184.

    Google Scholar 

  • Sjögren C, Andersson K-H, Husted S et al. (1982b) Atropine resistance of transmurally stimulated isolated human bladder muscle. J Urol 128:1368–1371.

    PubMed  Google Scholar 

  • Small JV (1977) Studies on isolated smooth muscle cells: the contractile apparatus. J Cell Sci 24:327–349.

    PubMed  CAS  Google Scholar 

  • Sneddon P, Westfall DP (1984) Pharmacological evidence that ATP and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol (Lond) 347:561–580.

    CAS  Google Scholar 

  • Somlyo AV, Frazini-Armstrong C (1985) New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 41:841–856.

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (1968) Vascular smooth muscle. 1. Normal structure, pathology, biochemistry and biophysics. Pharmacol Rev 20:197–272.

    PubMed  CAS  Google Scholar 

  • Speakman MJ, Brading AF, Dixon JS (1986a) The pathophysiology of detrusor instability in obstructed micturition. Proceedings of the 16th Annual Meeting of the International Continence Society, Boston.

    Google Scholar 

  • Speakman MJ, Walmsley D, Brading AF (1986b) An in vitro pharmacological study of the human trigone—a site of non- adrenergic, non-cholinergic transmission. Proceedings of the British Association of Urological Surgeons, London meeting.

    Google Scholar 

  • Taira N (1972) The autonomic pharmacology of the bladder. Annu Rev Pharmacol 12:197–208.

    PubMed  CAS  Google Scholar 

  • Tanagho EA (1976) The ureterovesical junction: anatomy and physiology. In: Williams DI, Chisholm GD (eds) Scientific foundations of urology, vol 2. Year Book Medical Publishers, Chicago, p 32.

    Google Scholar 

  • Tanagho EA, Smith DR, Meyers FH (1968) The trigone: anatomical and physiological considerations. 2. In relation to the bladder neck. J Urol 100:633–639.

    PubMed  CAS  Google Scholar 

  • Theobald R (1982) Arylazido aminopropionyl A.T.P. (ANAPP3) antagonism of cat urinary bladder contractions. J Auton Pharmacol 3:175–179.

    Google Scholar 

  • Tomita T (1970) Electrical properties of mammalian smooth muscle. In: Biilbring E, Brading AF, Jones AW, Tomita T (eds) Smooth muscle. Arnold, London, pp 197–243.

    Google Scholar 

  • Torrens MJ (1978) Urethral sphincteric responses to stimulation of the sacral nerves in the human female. Urol Int 33:22–26.

    Google Scholar 

  • Ursillo RC (1961) Electrical activity of the isolated nerve-urinary bladder strip preparation of the rabbit. Am J Physiol 201:408–412.

    PubMed  CAS  Google Scholar 

  • Ursillo RC, Clark B (1956) The action of atropine on the urinary bladder of the dog and on an isolated nerve-bladder strip preparation of the rabbit. J Pharmacol Exp Ther 118:338–347.

    PubMed  CAS  Google Scholar 

  • Uvelius B (1976) Isometric and isotonic length-tension relations and variations in cell length in longitudinal smooth muscle from rabbit urinary bladder. Acta Physiol Scand 97:1–12.

    PubMed  CAS  Google Scholar 

  • Uvelius B, Gabella G (1980) Relation between cell length and force production in urinary bladder smooth muscle. Acta Physiol Scand 110:357–365.

    PubMed  CAS  Google Scholar 

  • van Duyl WA (1985a) A model for both the passive and the active properties of urinary bladder tissue related to bladder function. Neurourol Urodyn 4:275–283.

    Google Scholar 

  • van Duyl WA (1985b) Spontaneous contractions in urinary bladder smooth muscle: preliminary results. Neurourol Urodyn 4:301–307.

    Google Scholar 

  • Walker J, Bates CP (1985) Responses of isolated strips of smooth muscle from the human bladder neck. Proceedings of the 15th Annual Meeting of the International Continence Society, London, pp 168–169.

    Google Scholar 

  • Westfall DP, Fedan JS, Colby J etal. (1983) Evidence for a contribution by purines to the neurogenic response of the guinea-pig urinary bladder. Eur J Pharmacol 87:415–422.

    PubMed  CAS  Google Scholar 

  • Wuytack F, Raemaekers L, Casteels T (1985) Ca-exchange, Ca- channels and Ca-antagonists. Experientia 41:900–905.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brading, A. (1987). Physiology of Bladder Smooth Muscle. In: Torrens, M., Morrison, J.F.B. (eds) The Physiology of the Lower Urinary Tract. Springer, London. https://doi.org/10.1007/978-1-4471-1449-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1449-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1451-2

  • Online ISBN: 978-1-4471-1449-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics