Skip to main content

Right Ventricular Performance and Positive End-Expiratory Pressure Ventilation

  • Chapter
Book cover Shock and the Adult Respiratory Distress Syndrome

Part of the book series: Current Concepts in Critical Care ((CRITICAL CARE))

Abstract

It is now well recognized that the application of positive end-expiratory pressure (PEEP) to the ventilation of patients with adult respiratory distress syndrome (ARDS) improves the arterial oxygen tension but may be associated with a fall in cardiac output, thus leading to the net effect of unchanged or even reduced systemic oxygen transport. However, the factors causing this decrease in cardiac output remain controversial (Craig et al. 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armour JA, Page JB, Randall WC (1970) Interrelationship of architecture and function of the right ventricle. Am J Physiol 218:174–179.

    PubMed  CAS  Google Scholar 

  • Bellamy RF, Lowensohn HS (1980) Effect of systole on coronary pressure-flow relations in the right ventricle of the dog. Am J Physiol 238:H481–H486.

    PubMed  CAS  Google Scholar 

  • Beyer J, Messmer K (1982) Organdurchblutung und Sauerstoffversorgung bei PEEP. Springer, Berlin Heidelberg New York (Anaesthesiologie und Intensivmedizin, vol 145)

    Google Scholar 

  • Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH (1971) Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest 50:2176–2183.

    Article  PubMed  CAS  Google Scholar 

  • Brooks H, Holland R, Al-Sadir J (1977) Right ventricular performance during ischemia: an anatomic and hemodynamic analysis. Am J Physiol 233:H500–H513.

    Google Scholar 

  • Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis 124:121–128.

    PubMed  CAS  Google Scholar 

  • Canada E, Benumof JL, Tousdale FR (1982) Pulmonary vascular resistance correlates in intact normal and abnormal canine lungs. Crit Care Med 10:719–723.

    Article  PubMed  CAS  Google Scholar 

  • Cassidy SS, Ramanthan M (1984) Dimensional analysis of the left ventricle during PEEP: relative septal and lateral wall displacements. Am J Physiol 246:H792–H805.

    PubMed  CAS  Google Scholar 

  • Cassidy SS, Robertson CH, Pierce AK, Johnson RL (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44:743–750.

    PubMed  CAS  Google Scholar 

  • Cassidy SS, Mitchell JH, Johnson RL (1982) Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs. Am J Physiol 242:H549–H556.

    PubMed  CAS  Google Scholar 

  • Craig KC, Pierson DJ, Carrico CJ (1985) The clinical application of positive end-expiratory pressure (PEEP) in the adult respiratory distress syndrome (ARDS). Resp Care 30:184–201.

    Google Scholar 

  • Ditchey RV (1984) Volume-dependent effects of positive airway pressure on intracavitary left ventricular end-diastolic pressure. Circulation 69:815–821.

    Article  PubMed  CAS  Google Scholar 

  • Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ (1985) Contribution of left ventricular contraction to right ventricular systolic pressure in the human heart. Circulation 71:473–480.

    Article  PubMed  CAS  Google Scholar 

  • Fewell JE, Abendschein DR, Carlson CJ, Rapaport E, Murray JF (1980a) Mechanism of decreased right and left ventricular end-diastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res 47:467–472.

    PubMed  CAS  Google Scholar 

  • Fewell JE, Abendschein DR, Carlson CJ, Murray JF, Rapaport E (1980b) Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res 46:125–132.

    PubMed  CAS  Google Scholar 

  • Forst H, Racenberg J, Fujita Y, Zeintl H, Messmer K (1984) Does “PEEP” influence right ventricular performance? Eur Surg Res 16[Suppl 1]:34.

    Google Scholar 

  • Forst H, Racenberg J, Peter K, Messmer K (1986) The right ventricle: a pump or a reservoir? Eur J Anaesthesiol 3:74.

    Google Scholar 

  • Gold FL, Bache RJ (1982) Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Circ Res 51:196–204.

    PubMed  CAS  Google Scholar 

  • Goto Y, Yamamoto J, Saito M et al. (1985) Effects of right ventricular ischemia on left ventricular geometry and the end-diastolic pressure-volume relationship in the dog. Circulation 72:1104–1114.

    Article  PubMed  CAS  Google Scholar 

  • Grindlinger GA, Manny J, Justice R, Dunham B, Shepro D, Hechtman HB (1979) Presence of negative inotropic agents in canine plasma during positive end-expiratory pressure. Circ Res 45:460–467.

    PubMed  CAS  Google Scholar 

  • Haynes JB, Carson SD, Whitney WP, Zerbe GO, Hyers TM, Steele P (1980) Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves. J Appl Physiol 48:670–676.

    PubMed  CAS  Google Scholar 

  • Jardin F, Farcot JCh, Boisante L, Curien N, Margairaz A, Bourdarias J-P (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392.

    Article  PubMed  CAS  Google Scholar 

  • Jardin F, Farcot JCh, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1984) Echocardiographic evaluation of ventricles during continuous positive airway pressure breathing. J Appl Physiol 56:619–627.

    PubMed  CAS  Google Scholar 

  • Kay HR, Afshari M, Barash P et al. (1983) Measurement of ejection fraction by thermal dilution techniques. J Surg Res 34:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Laver MB, Strauss HW, Pohost GM (1979) Right and left ventricular geometry: adjustments during acute respiratory failure. Crit Care Med 7:509–519.

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Boughner DR (1985) Mechanical properties of human pericardium: differences in viscoelastic response when compared with canine pericardium. Circ Res 55:475–481.

    Google Scholar 

  • Liebman PR, Patten MT, Manny J, Shepro D, Hechtman HB (1978) The mechanism of depressed cardiac output on positive end-expiratory pressure (PEEP). Surgery 83:594–598.

    PubMed  CAS  Google Scholar 

  • Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE (1976) Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39:760–766.

    PubMed  CAS  Google Scholar 

  • Manny J, Patten MT, Liebman PR, Hechtman HB (1978) The association of lung distension, PEEP and biventricular failure. Ann Surg 18:151–157.

    Article  Google Scholar 

  • Manny J, Justice R, Hechtman HB (1979) Abnormalities in organ blood flow and its distribution during positive end-expiratory pressure. Surgery 85:425–432.

    PubMed  CAS  Google Scholar 

  • Manohar M, Bisgard GE, Bullard V, Will JA, Anderson D, Rankin JH (1978) Myocardial perfusion and function during acute right ventricular systolic hypertension. Am J Physiol 235:H628–H636.

    PubMed  CAS  Google Scholar 

  • Marini JJ, Culver BH, Butler J (1981) Effect of positive end-expiratory pressure on canine ventricular function curves. J Appl Physiol 51:1367–1374.

    PubMed  CAS  Google Scholar 

  • Matthay RA, Berger HJ (1983) Noninvasive assessment of right and left ventricular function in acute and chronic respiratory failure. Crit Care Med 11:329–338.

    Article  PubMed  CAS  Google Scholar 

  • Meier GD, Bove AA, Santamore WP, Lynch PR (1980) Contractile function in the canine right ventricle. Am J Physiol 239:H794–H804.

    PubMed  CAS  Google Scholar 

  • Molaug M, Stokland O, Ilebeek A, Lekven J, Kiil F (1981) Myocardial function of the interventricular septum: effects of right and left ventricular pressure loading before and after pericardiotomy in dogs. Circ Res 49:52–61.

    PubMed  CAS  Google Scholar 

  • Oboler AA, Keefe JF, Gaasch WH, Banas JS, Levine HJ (1973) Influence of left ventricular isovolumic pressure upon right ventricular pressure transients. Cardiology 58:32–44.

    Article  PubMed  CAS  Google Scholar 

  • Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW, Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52:85–104.

    PubMed  CAS  Google Scholar 

  • Pearlman AS, Clark CE, Henry WL, Morganroth J, Itscoitz SB, Epstein SE (1976) Determinants of ventricular septal motion: influence of relative right and left ventricular size. Circulation 54:83–91.

    PubMed  CAS  Google Scholar 

  • Piene H, Sund T (1979) Row and power output of right ventricle facing load with variable input impedance. Am J Physiol 237:H125–H130.

    PubMed  CAS  Google Scholar 

  • Pouleur H, Lefevre J, Van Mechelen H, Charlier AA (1980) Free-wall shortening and relaxation during ejection in the canine right ventricle. Am J Physiol 239:H601–H613.

    PubMed  CAS  Google Scholar 

  • Prewitt RM, Wood LDH (1979) Effect of positive end-expiratory pressure on ventricular function in dogs. Am J Physiol 236:H534–H544.

    PubMed  CAS  Google Scholar 

  • Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP. Anesthesiology 42:45–55.

    Article  PubMed  CAS  Google Scholar 

  • Raines RA, LeWinter MM, Covell JW (1979) Regional shortening patterns in canine right ventricle. Am J Physiol 231:1395–1400.

    Google Scholar 

  • Racenberg J, Fujita Y, Forst H, Brückner UB, Messmer K (1983) Rechtsventrikuläre Kontraktilität bei PEEP-Beatmung. Anaesthesist 32[Suppl]:355–356.

    Google Scholar 

  • Rankin JS, Olsen CO, Arentzen CE et al. (1982) The effect of airway pressure on cardiac function in intact dogs and man. Circulation 66:108–120.

    Article  PubMed  CAS  Google Scholar 

  • Rushmer RF, Crystal DK, Wagner C (1952) The functional anatomy of ventricular contraction. Circ Res 1:162–170.

    Google Scholar 

  • Santamore WP, Meier GD, Bove AA (1979) Effects of hemodynamic alterations on wall motion in the canine right ventricle. Am J Physiol 5:H254–H262.

    Google Scholar 

  • Santamore WP, Bove AA, Heckman JL (1984) Right and left ventricular pressure-volume response to positive end-expiratory pressure. Am J Physiol 246:H114–H119.

    PubMed  CAS  Google Scholar 

  • Scharf SM, Ingram RH (1977) Effects of decreasing lung compliance with oleic acid on the cardiovascular response to PEEP. Am J Physiol 233:H635–H641.

    PubMed  CAS  Google Scholar 

  • Scharf SM, Brown R, Saunders N, Green LH, Ingram RH (1979) Changes in canine left ventricular size and configuration with positive end-expiratory pressure. Circ Res 44:672–678.

    PubMed  CAS  Google Scholar 

  • Sibbald WJ, Driedger AA (1983) Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med 11:339–345.

    Article  PubMed  CAS  Google Scholar 

  • Sibbald WJ, Driedger AA, Myers ML, Short AI, Wells GA (1983) Biventricular function in the adult respiratory distress syndrome: hemodynamic and radionuclide assessment, with special emphasis on right ventricular function. Chest 84:126–134.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Tei C, Nakao S, Tahara M, Sakurai S, Kashima T, Kanehisa T (1980) Diastolic bulging of the interventricular septum toward the left ventricle: an echocardiographic manifestation of negative interventricular pressure gradient between left and right ventricles during diastole. Circulation 62:558–563.

    PubMed  CAS  Google Scholar 

  • Tyson GS, Maier GW, Olsen CO, Davis JW, Rankin JS (1984) Pericardial influences on ventricular filling in the conscious dog: an analysis based on pericardial pressure. Circ Res 54:173–184.

    PubMed  Google Scholar 

  • Viquerat CE, Righetti A, Suter PM (1983) Biventricular volumes and function in patients with adult respiratory distress syndrome ventilated with PEEP. Chest 83:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Visner MS, Arentzen CE, O’Connor MJ, Larson EV, Anderson RW (1983) Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation 67:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Vlahakes GJ, Turley K, Hoffman JE (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forst, H., Racenberg, J., Peter, K., Messmer, K. (1988). Right Ventricular Performance and Positive End-Expiratory Pressure Ventilation. In: Kox, W., Bihari, D. (eds) Shock and the Adult Respiratory Distress Syndrome. Current Concepts in Critical Care. Springer, London. https://doi.org/10.1007/978-1-4471-1443-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1443-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1445-1

  • Online ISBN: 978-1-4471-1443-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics