Right Ventricular Performance and Positive End-Expiratory Pressure Ventilation

  • H. Forst
  • J. Racenberg
  • K. Peter
  • K. Messmer
Part of the Current Concepts in Critical Care book series (CRITICAL CARE)


It is now well recognized that the application of positive end-expiratory pressure (PEEP) to the ventilation of patients with adult respiratory distress syndrome (ARDS) improves the arterial oxygen tension but may be associated with a fall in cardiac output, thus leading to the net effect of unchanged or even reduced systemic oxygen transport. However, the factors causing this decrease in cardiac output remain controversial (Craig et al. 1985).


Right Ventricular Myocardial Blood Flow Adult Respiratory Distress Syndrome Right Ventricular Volume Right Ventricular Free Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armour JA, Page JB, Randall WC (1970) Interrelationship of architecture and function of the right ventricle. Am J Physiol 218:174–179.PubMedGoogle Scholar
  2. Bellamy RF, Lowensohn HS (1980) Effect of systole on coronary pressure-flow relations in the right ventricle of the dog. Am J Physiol 238:H481–H486.PubMedGoogle Scholar
  3. Beyer J, Messmer K (1982) Organdurchblutung und Sauerstoffversorgung bei PEEP. Springer, Berlin Heidelberg New York (Anaesthesiologie und Intensivmedizin, vol 145)Google Scholar
  4. Brooks H, Kirk ES, Vokonas PS, Urschel CW, Sonnenblick EH (1971) Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest 50:2176–2183.PubMedCrossRefGoogle Scholar
  5. Brooks H, Holland R, Al-Sadir J (1977) Right ventricular performance during ischemia: an anatomic and hemodynamic analysis. Am J Physiol 233:H500–H513.Google Scholar
  6. Calvin JE, Driedger AA, Sibbald WJ (1981) Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis 124:121–128.PubMedGoogle Scholar
  7. Canada E, Benumof JL, Tousdale FR (1982) Pulmonary vascular resistance correlates in intact normal and abnormal canine lungs. Crit Care Med 10:719–723.PubMedCrossRefGoogle Scholar
  8. Cassidy SS, Ramanthan M (1984) Dimensional analysis of the left ventricle during PEEP: relative septal and lateral wall displacements. Am J Physiol 246:H792–H805.PubMedGoogle Scholar
  9. Cassidy SS, Robertson CH, Pierce AK, Johnson RL (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44:743–750.PubMedGoogle Scholar
  10. Cassidy SS, Mitchell JH, Johnson RL (1982) Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs. Am J Physiol 242:H549–H556.PubMedGoogle Scholar
  11. Craig KC, Pierson DJ, Carrico CJ (1985) The clinical application of positive end-expiratory pressure (PEEP) in the adult respiratory distress syndrome (ARDS). Resp Care 30:184–201.Google Scholar
  12. Ditchey RV (1984) Volume-dependent effects of positive airway pressure on intracavitary left ventricular end-diastolic pressure. Circulation 69:815–821.PubMedCrossRefGoogle Scholar
  13. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ (1985) Contribution of left ventricular contraction to right ventricular systolic pressure in the human heart. Circulation 71:473–480.PubMedCrossRefGoogle Scholar
  14. Fewell JE, Abendschein DR, Carlson CJ, Rapaport E, Murray JF (1980a) Mechanism of decreased right and left ventricular end-diastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res 47:467–472.PubMedGoogle Scholar
  15. Fewell JE, Abendschein DR, Carlson CJ, Murray JF, Rapaport E (1980b) Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res 46:125–132.PubMedGoogle Scholar
  16. Forst H, Racenberg J, Fujita Y, Zeintl H, Messmer K (1984) Does “PEEP” influence right ventricular performance? Eur Surg Res 16[Suppl 1]:34.Google Scholar
  17. Forst H, Racenberg J, Peter K, Messmer K (1986) The right ventricle: a pump or a reservoir? Eur J Anaesthesiol 3:74.Google Scholar
  18. Gold FL, Bache RJ (1982) Transmural right ventricular blood flow during acute pulmonary artery hypertension in the sedated dog. Circ Res 51:196–204.PubMedGoogle Scholar
  19. Goto Y, Yamamoto J, Saito M et al. (1985) Effects of right ventricular ischemia on left ventricular geometry and the end-diastolic pressure-volume relationship in the dog. Circulation 72:1104–1114.PubMedCrossRefGoogle Scholar
  20. Grindlinger GA, Manny J, Justice R, Dunham B, Shepro D, Hechtman HB (1979) Presence of negative inotropic agents in canine plasma during positive end-expiratory pressure. Circ Res 45:460–467.PubMedGoogle Scholar
  21. Haynes JB, Carson SD, Whitney WP, Zerbe GO, Hyers TM, Steele P (1980) Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves. J Appl Physiol 48:670–676.PubMedGoogle Scholar
  22. Jardin F, Farcot JCh, Boisante L, Curien N, Margairaz A, Bourdarias J-P (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392.PubMedCrossRefGoogle Scholar
  23. Jardin F, Farcot JCh, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1984) Echocardiographic evaluation of ventricles during continuous positive airway pressure breathing. J Appl Physiol 56:619–627.PubMedGoogle Scholar
  24. Kay HR, Afshari M, Barash P et al. (1983) Measurement of ejection fraction by thermal dilution techniques. J Surg Res 34:337–346.PubMedCrossRefGoogle Scholar
  25. Laver MB, Strauss HW, Pohost GM (1979) Right and left ventricular geometry: adjustments during acute respiratory failure. Crit Care Med 7:509–519.PubMedCrossRefGoogle Scholar
  26. Lee JM, Boughner DR (1985) Mechanical properties of human pericardium: differences in viscoelastic response when compared with canine pericardium. Circ Res 55:475–481.Google Scholar
  27. Liebman PR, Patten MT, Manny J, Shepro D, Hechtman HB (1978) The mechanism of depressed cardiac output on positive end-expiratory pressure (PEEP). Surgery 83:594–598.PubMedGoogle Scholar
  28. Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE (1976) Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39:760–766.PubMedGoogle Scholar
  29. Manny J, Patten MT, Liebman PR, Hechtman HB (1978) The association of lung distension, PEEP and biventricular failure. Ann Surg 18:151–157.CrossRefGoogle Scholar
  30. Manny J, Justice R, Hechtman HB (1979) Abnormalities in organ blood flow and its distribution during positive end-expiratory pressure. Surgery 85:425–432.PubMedGoogle Scholar
  31. Manohar M, Bisgard GE, Bullard V, Will JA, Anderson D, Rankin JH (1978) Myocardial perfusion and function during acute right ventricular systolic hypertension. Am J Physiol 235:H628–H636.PubMedGoogle Scholar
  32. Marini JJ, Culver BH, Butler J (1981) Effect of positive end-expiratory pressure on canine ventricular function curves. J Appl Physiol 51:1367–1374.PubMedGoogle Scholar
  33. Matthay RA, Berger HJ (1983) Noninvasive assessment of right and left ventricular function in acute and chronic respiratory failure. Crit Care Med 11:329–338.PubMedCrossRefGoogle Scholar
  34. Meier GD, Bove AA, Santamore WP, Lynch PR (1980) Contractile function in the canine right ventricle. Am J Physiol 239:H794–H804.PubMedGoogle Scholar
  35. Molaug M, Stokland O, Ilebeek A, Lekven J, Kiil F (1981) Myocardial function of the interventricular septum: effects of right and left ventricular pressure loading before and after pericardiotomy in dogs. Circ Res 49:52–61.PubMedGoogle Scholar
  36. Oboler AA, Keefe JF, Gaasch WH, Banas JS, Levine HJ (1973) Influence of left ventricular isovolumic pressure upon right ventricular pressure transients. Cardiology 58:32–44.PubMedCrossRefGoogle Scholar
  37. Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW, Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52:85–104.PubMedGoogle Scholar
  38. Pearlman AS, Clark CE, Henry WL, Morganroth J, Itscoitz SB, Epstein SE (1976) Determinants of ventricular septal motion: influence of relative right and left ventricular size. Circulation 54:83–91.PubMedGoogle Scholar
  39. Piene H, Sund T (1979) Row and power output of right ventricle facing load with variable input impedance. Am J Physiol 237:H125–H130.PubMedGoogle Scholar
  40. Pouleur H, Lefevre J, Van Mechelen H, Charlier AA (1980) Free-wall shortening and relaxation during ejection in the canine right ventricle. Am J Physiol 239:H601–H613.PubMedGoogle Scholar
  41. Prewitt RM, Wood LDH (1979) Effect of positive end-expiratory pressure on ventricular function in dogs. Am J Physiol 236:H534–H544.PubMedGoogle Scholar
  42. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP. Anesthesiology 42:45–55.PubMedCrossRefGoogle Scholar
  43. Raines RA, LeWinter MM, Covell JW (1979) Regional shortening patterns in canine right ventricle. Am J Physiol 231:1395–1400.Google Scholar
  44. Racenberg J, Fujita Y, Forst H, Brückner UB, Messmer K (1983) Rechtsventrikuläre Kontraktilität bei PEEP-Beatmung. Anaesthesist 32[Suppl]:355–356.Google Scholar
  45. Rankin JS, Olsen CO, Arentzen CE et al. (1982) The effect of airway pressure on cardiac function in intact dogs and man. Circulation 66:108–120.PubMedCrossRefGoogle Scholar
  46. Rushmer RF, Crystal DK, Wagner C (1952) The functional anatomy of ventricular contraction. Circ Res 1:162–170.Google Scholar
  47. Santamore WP, Meier GD, Bove AA (1979) Effects of hemodynamic alterations on wall motion in the canine right ventricle. Am J Physiol 5:H254–H262.Google Scholar
  48. Santamore WP, Bove AA, Heckman JL (1984) Right and left ventricular pressure-volume response to positive end-expiratory pressure. Am J Physiol 246:H114–H119.PubMedGoogle Scholar
  49. Scharf SM, Ingram RH (1977) Effects of decreasing lung compliance with oleic acid on the cardiovascular response to PEEP. Am J Physiol 233:H635–H641.PubMedGoogle Scholar
  50. Scharf SM, Brown R, Saunders N, Green LH, Ingram RH (1979) Changes in canine left ventricular size and configuration with positive end-expiratory pressure. Circ Res 44:672–678.PubMedGoogle Scholar
  51. Sibbald WJ, Driedger AA (1983) Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med 11:339–345.PubMedCrossRefGoogle Scholar
  52. Sibbald WJ, Driedger AA, Myers ML, Short AI, Wells GA (1983) Biventricular function in the adult respiratory distress syndrome: hemodynamic and radionuclide assessment, with special emphasis on right ventricular function. Chest 84:126–134.PubMedCrossRefGoogle Scholar
  53. Tanaka H, Tei C, Nakao S, Tahara M, Sakurai S, Kashima T, Kanehisa T (1980) Diastolic bulging of the interventricular septum toward the left ventricle: an echocardiographic manifestation of negative interventricular pressure gradient between left and right ventricles during diastole. Circulation 62:558–563.PubMedGoogle Scholar
  54. Tyson GS, Maier GW, Olsen CO, Davis JW, Rankin JS (1984) Pericardial influences on ventricular filling in the conscious dog: an analysis based on pericardial pressure. Circ Res 54:173–184.PubMedGoogle Scholar
  55. Viquerat CE, Righetti A, Suter PM (1983) Biventricular volumes and function in patients with adult respiratory distress syndrome ventilated with PEEP. Chest 83:509–514.PubMedCrossRefGoogle Scholar
  56. Visner MS, Arentzen CE, O’Connor MJ, Larson EV, Anderson RW (1983) Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation 67:353–365.PubMedCrossRefGoogle Scholar
  57. Vlahakes GJ, Turley K, Hoffman JE (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • H. Forst
  • J. Racenberg
  • K. Peter
  • K. Messmer

There are no affiliations available

Personalised recommendations