The Morphology of the Adult Respiratory Distress Syndrome

  • G. Schlag
  • H. Redl
Part of the Current Concepts in Critical Care book series (CRITICAL CARE)


The morphology of adult respiratory distress syndrome (ARDS) essentially involves two distinct aspects: aetiology and pathophysiology. Many different pathophysiological mechanisms may be important in the development of ARDS. However, although during the initial phase the morphological appearances may be somewhat disparate, eventually the morphological picture is that of classical ARDS.


Adult Respiratory Distress Syndrome Alveolar Space Interstitial Oedema Extravascular Lung Water Alveolar Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachofen M, Bachofen H (1979) Der Heilungsverlauf des schweren “adult respiratory distress syndrome”. Schweiz Med Wochenschr 109:1982–1989.PubMedGoogle Scholar
  2. Bleyl U (1979) Die Histophysiologie und Histopathologie der terminalen Lungenstrombahn bei akutem Lungenversagen. Klin Anaesthesiol Intensivmed 20:1–13.Google Scholar
  3. Dinges HP, Redl H, Schlag G (1984) Quantitative estimation of granulocyte in the lung after polytrauma: dog and human autopsy data. Eur Surg Res 16 [Suppl] 1:100–101.Google Scholar
  4. Gidlos A, Hammersen F, Larsson J, Lewis DH, Liljedahl SO (1982) Is capillary endothelium in human skeletal muscle an ischemic shock tissue? In: Lewis DH (ed) Induced skeletal muscle ischemia in man, Symposium Linköping, pp 63–79.Google Scholar
  5. Glause FL, Milien JE, Falls R (1979) Increased alveolar epithelial permeability with acid aspiration: the effects of high dose steriods. Am Rev Respir Dis 120:1119–1123.Google Scholar
  6. Hammersen F, Hammersen E (1984) The ultrastructure of microvascular endothelial cell reactions to various stimuli. Prog Appl Microcirc 6:91–108.Google Scholar
  7. Hassenstein J, Riede UN, Mittermayer C, Sandritter W (1980) Zur Frage der Reversibilität der schockinduzierten Lungenfibrose. Anaesthesiol Intensivther Notfallmed 15:340–349.CrossRefGoogle Scholar
  8. Herndon DN, Traber DL, Niehaus GD, Linares HA, Traber LD (1984) The pathophysiology of smoke inhalation injury in a sheep model. J Trauma 24:1044–1051.PubMedCrossRefGoogle Scholar
  9. Kazmierowski JA, Gallin JT, Reynolds HY (1977) Mechanism for the inflammatory response in primate lungs: demonstration and partial characterization of an alveolar macrophage derived chemotactic factor with preferential activity for polymorphonuclear leukocyctes. J Clin Invest 59:273–281.PubMedCrossRefGoogle Scholar
  10. Lamy M, Fallat RJ, Koeniger E, Dietrich HP, Ratliff J, Eberhart RC, Tucker HJ, Hill JD (1976) Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 114:267–284.PubMedGoogle Scholar
  11. Mecca RS (1986) Pulmonary contusion and flail chest. Curr Rev Respir Ther 8:75–79.Google Scholar
  12. Mercandetti AJ, Lane TA, Colmerauer MEM (1984) Cultured human endothelial cells elaborate neutrophil chemoattractants. J Lab Clin Med 104:370–380.PubMedGoogle Scholar
  13. Pretorius JP, Schlag G, Redl H, Botha WS, Goosen DJ, Bosman H (1987) The “lung in shock” as a result of hypovolemic-traumatic shock in baboons. J Trauma (submitted for publication).Google Scholar
  14. Redl H, Schlag G, Hammerschmidt DE (1984a) Quantitative assessment of leukostasis in experimental hypovolemic-traumatic shock. Acta Chir Scand 150:113–117.PubMedGoogle Scholar
  15. Redl H, Thurnher M, Krösl P, Schlag G (1984b) Extravaskuläre Lungenwasserbestimmung im hypovolämisch-traumatischen Schock (Frühpahse). Beitr Anaesthesiol Intensivmed 6:120–130.Google Scholar
  16. Saldeen T (1979) The microembolism syndrome: a review. In: Saldeen T (ed) The microembolism syndrome. Almqvist and Wiksell, Stockholm, pp 7–44.Google Scholar
  17. Schlag G, Redl H (1985a) Morphology of the microvascular system in shock: lung, liver, and skeletal muscle. Crit Care Med 13:1045–1049.PubMedGoogle Scholar
  18. Schlag G, Redl H (1985b) Morphology of the human lung after traumatic injury. In: Zapol WM, Falke KJ (eds) Acute respiratory failure. Marcel Dekker, New York Basel, pp 161–183.Google Scholar
  19. Schlag G, Voigt WH, Schnells G, Glatzl A (1976) Die Ultrastruktur der menschlichen Lunge im Schock: I. Anaesthesist 25:512–521.PubMedGoogle Scholar
  20. Schlag G, Voigt WH, Schnells G, Glatzl A (1977) Vergleichende Untersuchungen der Ultrastruktur von menschlicher Lunge und Skelettmuskulatur im Schock: II. Anaesthesist 26:612–622.PubMedGoogle Scholar
  21. Schlag G, Voigt WH, Redl H, Glatzl A (1980) Vergleichende Morphologie des posttraumatischen Lungenversagens. Anaesthesiol Intensivther Notfallmed 15:315–339.CrossRefGoogle Scholar
  22. Teplitz C (1976) The core pathobiology and integrated medical science of adult acute respiratory insufficiency. Surg Clin N Am 56:1091–1131.PubMedGoogle Scholar
  23. Thal AP, Brown EB, Hermeck AS, Bell HH (1972) Shock: a physiologic basis for treatment. Year Book Medical Publishers, Chicago, pp 72–121.Google Scholar
  24. Traber D, Schlag G, Redl H, Traber L (1984) The mechanism of the pulmonary edema of smoke inhalation. Circ Shock 13:78.Google Scholar
  25. Traber DL, Schlag G, Redl H, Traber LD (1987) Pulmonary edema and compliance changes following smoke inhalation. Burn (submitted for publication).Google Scholar
  26. Tranbaugh RF, Elings VB, Christensen JM, Lewis FR (1983) Effect of inhalation injury on lung water accumulation. J Trauma 23:597–604.PubMedCrossRefGoogle Scholar
  27. Zapol W, Trelstad RL, Coffey JW, Tasi I, Salvador RA (1979) Pulmonary fibrosis in severe acute respiratory failure. Am Rev Resp Dis 119:547–554.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • G. Schlag
  • H. Redl

There are no affiliations available

Personalised recommendations