Cellular Calcium: Secretion of Hormones

  • W. J. Malaisse
Part of the ILSI Human Nutrition Reviews book series (ILSI HUMAN)


During the late 1960s, being interested in the regulation of insulin release from isolated islets of Langerhans prepared from the pancreatic gland, I became convinced, like a few other scientists, that calcium plays a critical role in the process of insulin secretion by the pancreatic β-cell (Grodsky and Bennett 1966; Milner and Hales 1967). I thought, therefore, that it would be interesting to study the effect of D-glucose and other secretagogues upon the handling of radioactive 45Ca by the isolated islets (Malaisse-Lagae et al. 1969). Hence, I asked the director of the department, a leading clinician not too far from retirement, for permission to order some 45Ca and to introduce this isotope in the laboratory. The answer came, in essence, as follows. “Are you not confused? Calcium may play a role in the regulation of hormonal release by the parathyroid gland. But it is glucose and not calcium which stimulates insulin secretion.”


Islet Cell Pancreatic Islet Insulin Release Cellular Calcium Spiny Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alarcon C, Valverde I, Malaisse WJ (1985) Transglutaminase and cellular motile events: retardation of proinsulin conversion by glycine methylester. Biosci Rep 5:581–587PubMedCrossRefGoogle Scholar
  2. Anjaneyulu K, Anjaneyulu R, Malaisse WJ (1980) The stimulus-secretion coupling of glucose-induced insulin release. XLIII. Na-Ca countertransport mediated by pancreatic islet native ionophores. J Inorg Biochem 13:178–188CrossRefGoogle Scholar
  3. Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448PubMedCrossRefGoogle Scholar
  4. Atwater I, Dawson CM, Scott A, Eddlestone G, Rojas E (1980) The nature of the oscillatory behaviour in electrical activity from pancreatic β-cell. Horm Metab Res [Suppl] 10:100–107Google Scholar
  5. Atwater I, Ferrer R, Goncalves A et al. (1984) Cooling dissociates insulin release from electrical activity and cationic fluxes in pancreatic islets. J Physiol (Lond) 348:615–627Google Scholar
  6. Best L, Malaisse WJ (1984) Nutrient and hormone-neurotransmitter stimuli induce hydrolysis of polyphosphoinositides in rat pancreatic islets. Endocrinology 115:1814–1820PubMedCrossRefGoogle Scholar
  7. Brisson GR, Malaisse-Lagae F, Malaisse WJ (1972) The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3′,5′-cyclic monophosphate. J Clin Invest 51:232–241PubMedCrossRefGoogle Scholar
  8. Bungay PT, Potter JM, Griffin M (1984) The inhibition of glucose-stimulated insulin secretion by primary amines. A role for transglutaminase in the secretory mechanism. Biochem J 219:819–827PubMedGoogle Scholar
  9. Colca JR, Brooks CL, Landt M, McDaniel ML (1983) Correlation of Ca2+-and calmodulin-dependent protein kinase activity with secretion of insulin from islets of Langerhans. Biochem J 212:819–827PubMedGoogle Scholar
  10. Cook DL, Hales N (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273PubMedCrossRefGoogle Scholar
  11. Dean PM (1974) Surface electrostatic-charge measurements on islet and zymogen granules: effect of calcium ions. Diabetologia 10:427–430PubMedCrossRefGoogle Scholar
  12. Deleers M, Mahy M, Malaisse WJ (1982) Calcium ionophoresis by pancreatic islet extracts in model membranes. Int Biochem 4:47–57Google Scholar
  13. Deleers M, Mahy M, Malaisse WJ (1985) Glucose increases cytosolic Ca2+ activity in pancreatic islet cells. Biochem Int 10:97–103PubMedGoogle Scholar
  14. Devis G, Somers G, Malaisse WJ (1975) Stimulation of insulin release by calcium. Biochem Biophys Res Commun 67:525–529PubMedCrossRefGoogle Scholar
  15. Devis G, Somers G, Malaisse WJ (1977) Dynamics of calcium-induced insulin release. Diabetologia 13:531–536PubMedCrossRefGoogle Scholar
  16. Findlay I, Dunne MJ (1985) Voltage-activated Ca2+ currents in insulin secreting cells. FEBS Lett 189:281–285PubMedCrossRefGoogle Scholar
  17. Gomis R, Sener A, Malaisse-Lagae F, Malaisse WJ (1983) Transglutaminase activity in pancreatic islets. Biochim Biophys Acta 760:384–388PubMedCrossRefGoogle Scholar
  18. Gomis R, Deleers M, Malaisse-Lagae F et al. (1984a) Metabolic and secretory effects of methylamine in pancreatic islets. Cell Biochem Funct 2:161–166PubMedCrossRefGoogle Scholar
  19. Gomis R, Mathias PCF, Lebrun P et al. (1984b) Inhibition of transglutaminase by hypoglycaemic sulphonylureas in pancreatic islets and its possible relevance to insulin release. Res Commun Chem Pathol Pharmacol 46:331–349PubMedGoogle Scholar
  20. Gomis R, Arbos MA, Sener A, Malaisse WJ (1986a) Glucose-induced activation of transglutaminase in pancreatic islets. Diab Res 3:115–117Google Scholar
  21. Gomis R, Arbos MA, Malaisse WJ (1986b) Activation of transglutaminase by dibutyryl-cyclic AMP and theophylline in rat pancreatic islets. IRCS Med Sci 14:134–135Google Scholar
  22. Grodsky GM, Bennett LL (1966) Cation requirement for insulin secretion in the isolated perfused pancreas. Diabetes 15:910–913PubMedGoogle Scholar
  23. Hellman B (1985) β-Cell cytoplasmic Ca2+ balance as a determinant for glucose-stimulated insulin release. Diabetologia 28:494–501PubMedCrossRefGoogle Scholar
  24. Hellman B, Gylfe E (1984) Glucose inhibits 45Ca efflux from pancreatic β-cells also in the absence of Na+-Ca2+ counter-transport. Biochim Biophys Acta 770:136–141PubMedCrossRefGoogle Scholar
  25. Hellman B, Gylfe E (1986) Calcium and the control of insulin secretion. In: Chiung W (ed) Calcium and cell biology, vol 6, Academic Press, New York, Chapter 8Google Scholar
  26. Henquin JC, Meissner HP (1983) Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B-cell. Biochem Biophys Res Commun 112:614–620PubMedCrossRefGoogle Scholar
  27. Henquin JC, Meissner HP (1984) Significance of ionic fluxes and changes in membrane potential for stimulus-secretion coupling in pancreatic B-cells. Experientia 40:1043–1052PubMedCrossRefGoogle Scholar
  28. Henquin JC, Schmeer W, Meissner HP (1983) Forskolin, an activator of adenylate cyclase, increases Ca2+-dependent electrical activity induced by glucose in mouse pancreatic B-cells. Endocrinology 112:2218–2220PubMedCrossRefGoogle Scholar
  29. Herchuelz A, Malaisse WJ (1980a) Regulation of calcium fluxes in pancreatic islets: two calcium movements’ dissociated response to glucose. Am J Physiol 238:E87–E95PubMedGoogle Scholar
  30. Herchuelz A, Malaisse WJ (1980b) Regulation of calcium fluxes in rat pancreatic islets: dissimilar effects of glucose and of sodium ion accumulation. J Physiol (Lond) 302:263–280Google Scholar
  31. Herchuelz A, Sener A, Malaisse WJ (1980a) Regulation of calcium fluxes in rat pancreatic islets. Calcium extrusion by sodium-calcium counter transport. J Membr Biol 57:1–12PubMedCrossRefGoogle Scholar
  32. Herchuelz A, Couturier E, Malaisse WJ (1980b) Regulation of calcium fluxes in pancreatic islets: glucose-induced calcium-calcium exchange. Am J Physiol 238:E96–103PubMedGoogle Scholar
  33. Herchuelz A, Thonnart N, Sener A, Malaisse WJ (1980c) Regulation of calcium fluxes in pancreatic islets: the role of membrane depolarization. Endocrinology 107:491–497PubMedCrossRefGoogle Scholar
  34. Hubinont CJ, Malaisse WJ (1985) Protein kinase C activity in pancreatic islets: effects of Ca2+, calmodulin and retinoic acid. Biochem Int 10:577–584PubMedGoogle Scholar
  35. Kowluru A, MacDonald MJ (1984) Protein phosphorylation in pancreatic islets: evidence for separate Ca2+ and cAMP-enhanced phosphorylation of two 57 000 Mr proteins. Biochem Biophys Res Commun 118:797–804PubMedCrossRefGoogle Scholar
  36. Lacy PE, Malaisse WJ (1973) Microtubules and beta cell secretion. Recent Prog Horm Res 29:199–222PubMedGoogle Scholar
  37. Lacy PE, Finke EH, Codilla RC (1975) Cinematographic studies of β granule movement in monolayer culture of islet cells. Lab Invest 33:570–576PubMedGoogle Scholar
  38. Lebrun P, Malaisse WJ, Herchuelz A (1982) Evidence for two distinct modalities of Ca2+ influx into the pancreatic B-cell. Am J Physiol 242:E59–E66PubMedGoogle Scholar
  39. Lebrun P, Gomis R, Deleers M et al. (1984) Methylamines and islet function: cationic aspects. J Endocrinol Invest 7:347–355PubMedGoogle Scholar
  40. Lowe DA, Richardson BP, Taylor P, Donatsch P (1976) Increasing intracellular sodium triggers calcium release from bound pools. Nature 260:337–338PubMedCrossRefGoogle Scholar
  41. Malaisse WJ, Couturier E (1978) An ionophoretic model for Na-Ca counter transport. Nature 275:664–665PubMedCrossRefGoogle Scholar
  42. Malaisse WJ, Malaisse Lagae F (1984) The role of cyclic AMP in insulin release. Experientia 40:1068–1075PubMedCrossRefGoogle Scholar
  43. Malaisse WJ, Mathias PCF (1985) Stimulation of insulin release by an organic calcium agonist. Diabetologia 28:153–156PubMedCrossRefGoogle Scholar
  44. Malaisse WJ, Orci L (1979) The role of the cytoskeleton in pancreatic B-cell function. In: Gabbiani G (ed) Methods of achievements in experimental pathology, vol 9. Chapman and Hall, London, pp 112–136Google Scholar
  45. Malaisse WJ, Brisson GR, Malaisse-Lagae F (1971) Effet insulinotrope du calcium. Ann Endocrinol 32:621–622Google Scholar
  46. Malaisse WJ, Hager DL, Orci L (1972) The stimulus-secretion coupling of glucose-induced insulin release. IX. The participation of the β-cell web. Diabetes 21:594–604PubMedGoogle Scholar
  47. Malaisse WJ, Brisson GR, Baird LE (1973) The stimulus-secretion coupling of glucose-induced insulin release. X. Effect of glucose on 45Ca efflux from perifused islets. Am J Physiol 224:389–394PubMedGoogle Scholar
  48. Malaisse WJ, Leclercq-Meyer V, Van Obberghen E et al. (1975a) The role of the microtubular-microfilamentous system in insulin and glucagon release by the endocrine pancreas. In: Borgers M, De Branbander M (eds) Microtubules and microtubule inhibitors. North-Holland, Amsterdam, pp 143–152Google Scholar
  49. Malaisse WJ, Malaisse-Lagae F, Van Obberghen E et al. (1975b) Role of microtubules in the phasic pattern of insulin release. Ann NY Acad Sci 253:630–652PubMedCrossRefGoogle Scholar
  50. Malaisse WJ, Devis G, Herchuelz A, Sener A, Somers G (1976) Calcium antagonists and islet function. VIII. The effect of magnesium. Diabete Métab 2:1–4PubMedGoogle Scholar
  51. Malaisse WJ, Herchuelz A, Devis G et al. (1978a) Regulation of calcium fluxes and their regulatory roles in pancreatic islets. Ann NY Acad Sci 307:562–582PubMedCrossRefGoogle Scholar
  52. Malaisse WJ, Hutton JC, Sener A et al. (1978b) Calcium-antagonists and islet function. VII. Effect of calcium deprivation. J Membr Biol 38:193–208PubMedCrossRefGoogle Scholar
  53. Malaisse WJ, Sener A, Herchuelz A, Hutton JC (1979a) Insulin release: the fuel hypothesis. Metabolism 28:373–386PubMedCrossRefGoogle Scholar
  54. Malaisse WJ, Hutton JC, Kawazu S, Herchuelz A, Valverde I, Sener A (1979b) The stimulus-secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia 16:331–341PubMedCrossRefGoogle Scholar
  55. Malaisse WJ, Sener A, Herchuelz A et al. (1980a) Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res 40:3827–3831PubMedGoogle Scholar
  56. Malaisse WJ, Sener A, Herchuelz A et al. (1980b) The interplay between metabolic and cationic events in islet cells: coupling factors and feedback mechanisms. Horm Metab Res [Suppl] 10:61–66Google Scholar
  57. Malaisse WJ, Valverde I, Owen A, Verhulst D, Cantraine F (1982a) Mathematical modelling of cyclic AMP-Ca2+ interactions in pancreatic islets. Diabetes 31:170–177PubMedCrossRefGoogle Scholar
  58. Malaisse WJ, Lebrun P, Herchuelz A (1982b) Ionic determinants of bioelectrical spiking activity in the pancreatic B-cell. Pfluegers Arch 395:201–203CrossRefGoogle Scholar
  59. Malaisse WJ, Malaisse-Lagae F, Sener A (1984a) Coupling factors in nutrient-induced insulin release. Experientia 40:1035–1043PubMedCrossRefGoogle Scholar
  60. Malaisse WJ, Garcia-Morales P, Dufrane SP, Sener A, Valverde I (1984b) Forskolin-induced activation of adenylate cyclase, cyclic adenosine monophosphate production and insulin release in rat pancreatic islets. Endocrinology 115:2015–2020PubMedCrossRefGoogle Scholar
  61. Malaisse WJ, Dunlop ME, Mathias PCF, Malaisse-Lagae F, Sener A (1985a) Stimulation of protein kinase C and insulin release by 1-oleoyl-2-acetyl-glycerol. Eur J Biochem 149:23–27PubMedCrossRefGoogle Scholar
  62. Malaisse WJ, Scholler Y, De Maertelaer V (1985b) Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. IV. Dissociated time course for the glucose-induced changes in distinct Ca2+ movements. Diabetes Res 2:195–199PubMedGoogle Scholar
  63. Malaisse-Lagae F, Mahy M, Malaisse WJ (1969) Effect of epinephrine upon 45Ca uptake by isolated islets of Langerhans. Horm Metab Res 1:319–320PubMedCrossRefGoogle Scholar
  64. Malaisse-Lagae F, Ravazzola M, Amherdt M et al. (1975) An apparent abnormality of the B-cell microtubular system in spiny mice (Acomys cahirinus). Diabetologia II:71–76CrossRefGoogle Scholar
  65. Malaisse-Lagae F, Mathias PCF, Malaisse WJ (1984) Gating and blocking of calcium channels by dihydropyridines in the pancreatic B-cell. Biochem Biophys Res Commun 123:1062–1068PubMedCrossRefGoogle Scholar
  66. Mathias PCF, Best L, Malaisse WJ (1985) Stimulation by glucose and carbamylcholine of phospholipase C in pancreatic islets. Cell Biochem Funct 3:173–177PubMedCrossRefGoogle Scholar
  67. Meissner HP, Preissler M (1980) Ionic mechanisms of the glucose-induced membrane potential changes in B-cells. Horm Metab Res [Suppl] 10:91–99Google Scholar
  68. Milner RDG, Hales CN (1967) The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia 3:47–49PubMedCrossRefGoogle Scholar
  69. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic β-cell web: its possible role in insulin secretion. Science 175:1128–1130PubMedCrossRefGoogle Scholar
  70. Owen A, Sener A, Malaisse WJ (1983) Stimulus-secretion coupling of glucose-induced insulin release. LI. Divalent cations and ATPase activity in pancreatic islets. Enzyme 29:2–14PubMedGoogle Scholar
  71. Pace CS, Tarvin JT, Neighbors AS, Pirkel JA, Greider MH (1980) Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells. Diabetes 29:911–918PubMedGoogle Scholar
  72. Pershadsingh HA, McDaniel ML, Landt M, Bry GC, Lacy PE, McDonald JM (1980) Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+ transport in islet cell plasma membrane. Nature 288:492–495PubMedCrossRefGoogle Scholar
  73. Prentki M, Janjic D, Wollheim CB (1983) The regulation of extramitochondrial steady state free Ca2+ concentration by rat insulinoma mitochondria. J Biol Chem 258:7597–7602PubMedGoogle Scholar
  74. Prentki M, Janjic D, Wollheim CB (1984a) Coordinated regulation of free Ca2+ by isolated organelles from a rat insulinoma. J Biol Chem 259:14054–14058PubMedGoogle Scholar
  75. Prentki M, Biden TJ, Janjic D, Irvine RF, Berridge MJ, Wollheim CB (1984b) Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-l,4,5-trisphosphate. Nature 309:562–564PubMedCrossRefGoogle Scholar
  76. Prentki M, Janjic D, Biden TJ, Blondel B, Wollheim CB (1984c) Regulation of Ca2+ transport by isolated organelles of a rat insulinoma. J Biol Chem 259:10118–10123PubMedGoogle Scholar
  77. Rorsman P, Abrahamsson H (1985) Cyclic AMP potentiates glucose-induced insulin release from mouse pancreatic islets without increasing cytosolic free Ca2+. Acta Physiol Scand 125:639–647PubMedCrossRefGoogle Scholar
  78. Rorsman P, Trube G (1985) Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP. Pfluegers Arch 405:305–309CrossRefGoogle Scholar
  79. Rorsman P, Abrahamsson H, Gylfe E, Hellman B (1984) Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic β-cells. FEBS Lett 170:196–200PubMedCrossRefGoogle Scholar
  80. Scholler Y, De Maertelaer V, Malaisse WJ (1983) Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. I. Dynamics of insulin release. Acta Diabetol Lat 20:329–340PubMedCrossRefGoogle Scholar
  81. Scholler Y, De Maertelaer V, Malaisse WJ (1985) Mathematical modelling of stimulus-secretion coupling in the pancreatic B-cell. II. Calcium-stimulated calcium release. Comput Programs Biomed 19:119–126PubMedCrossRefGoogle Scholar
  82. Sener A, Malaisse-Lagae F, Malaisse WJ (1982) The stimulus-secretion coupling of glucose-induced insulin release. LII. Environmental influences on l-glutamine oxidation in pancreatic islets. Biochem J 202:309–316PubMedGoogle Scholar
  83. Sener A, Gomis R, Lebrun P, Herchuelz A, Malaisse-Lagae F, Malaisse WJ (1984) Methylamine and islet function: possible relationship to Ca2+-sensitive transglutaminase. Mol Cell Endocrinol 36:175–180PubMedCrossRefGoogle Scholar
  84. Sener A, Dunlop ME, Gomis R, Mathias PCF, Malaisse-Lagae F, Malaisse WJ (1985a) Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters. Endocrinology 117:237–242PubMedCrossRefGoogle Scholar
  85. Sener A, Gomis R, Billaudel B, Malaisse WJ (1985b) Facilitation of insulin release by N-p-tosylglycine. Biochem Pharmacol 34:2495–2499PubMedCrossRefGoogle Scholar
  86. Somers G, Devis G, Van Obberghen E, Malaisse WJ (1976a) Calcium-antagonists and islet function. VI. Effect of barium. Pfluegers Arch 365:21–28CrossRefGoogle Scholar
  87. Somers G, Devis G, Malaisse WJ (1976b) Analogy between native and exogenous ionophores in the pancreatic B-cell. FEBS Lett 66:20–22PubMedCrossRefGoogle Scholar
  88. Somers G, Blondel B, Orci L, Malaisse WJ (1979a) Motile events in pancreatic endocrine cells. Endocrinology 104:255–264PubMedCrossRefGoogle Scholar
  89. Somers G, Devis G, Malaisse WJ (1979b) Calcium-antagonists and islet function. IX. Is extracellular calcium required for insulin release? Acta Diabetol Lat 16:9–18PubMedCrossRefGoogle Scholar
  90. Täljedal I-B (1980) Fluorescent probing of calcium ions in islet cells. Horm Metab Res [Suppl] 10:130–137Google Scholar
  91. Valverde I, Malaisse WJ (1984) Calmodulin and pancreatic B-cell function. Experientia 40:1061–1068PubMedCrossRefGoogle Scholar
  92. Valverde I, Vandermeers A, Anjaneyulu R, Malaisse WJ (1979) Calmodulin activation of adenylate αcyclase in pancreatic islets. Science 206:225–227PubMedCrossRefGoogle Scholar
  93. Valverde I, Garcia-Morales P, Ghiglione M, Malaisse WJ (1983) The stimulus-secretion coupling of glucose-induced insulin release. LIII. Calcium-dependency of cyclic AMP response to nutrient secretagogues. Horm Metab Res 15:62–68PubMedCrossRefGoogle Scholar
  94. Wollheim CB, Sharp GWG (1981) Regulation of insulin release by calcium. Physiol Rev 61:914–973PubMedGoogle Scholar
  95. Wollheim CB, Blondel B, Trueheart PA, Renold AE, Sharp GWG (1975) Calcium induced insulin release in monolayer culture of the endocrine pancreas. Studies with ionophore A23187. J Biol Chem 250:1354–1360PubMedGoogle Scholar
  96. Wollheim CB, Kikuchi M, Renold AE, Sharp GWG (1978) The roles of intracellular and extracellular Ca2+ in glucose-stimulated biphasic insulin release by rat islets. J Clin Invest 62:451–458PubMedCrossRefGoogle Scholar
  97. Yaseen MA, Pedley KC, Howell SL (1982) Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge. Biochem J 206:81–87PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • W. J. Malaisse

There are no affiliations available

Personalised recommendations