Skip to main content

Normal Bone

  • Chapter

Abstract

The components of the skeleton may be divided into broad categories for general descriptive purposes. The long or tubular bones have a shaft of compact bone surrounding a central cavity which contains cancellous bone together with bone marrow and fat. The cortical bone is thickest in the mid-portion of the shaft, while the cancellous bone is relatively diminished in amount in this region, being more pronounced in density towards the bone ends. The tubular bones comprise the long tubular bones of the limbs (humerus, radius, ulna, femur, tibia and fibula) and the short tubular bones in the hands and feet (metacarpals, metatarsals and phalanges).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali SY (1976) Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage. Fed Proc 35:135–142

    PubMed  CAS  Google Scholar 

  • Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67: 1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Ali SY, Wisby A, Gray JC (1978) Electron probe analysis of cryosections of epiphyseal cartilage. Metab Bone Dis Relat Res 1:97–103

    Article  Google Scholar 

  • Amstutz HC, Sissons HA (1969) The structure of the vertebral spongiosa. J Bone Joint Surg [Br] 51:540–550

    CAS  Google Scholar 

  • Anderson HC (1967) Electron microscopic studies of induced cartilage development and calcification. J Cell Biol 35: 81–101

    Article  PubMed  CAS  Google Scholar 

  • Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59–72

    Article  PubMed  CAS  Google Scholar 

  • Anderson HC (1976) Matrix vesicle calcification. Introduction. Fed Proc 35:105–108

    CAS  Google Scholar 

  • Ash P, Loutit JF, Townsend KMS (1980) Osteoclasts derived from haemopoietic stem cells. Nature 283: 669–670

    Article  PubMed  CAS  Google Scholar 

  • Athanasou NA, Gray A, Revell PA, Fuller K, Cochrane T, Chambers TJ (1984) Steriophotogrammetric observations on bone resorption by isolated rabbit osteoclasts. Micron Microscopia Acta 15:47–53

    Article  Google Scholar 

  • Bachra BN (1970) Calcification of connective tissue. Int Rev Connect Tissue Res 5:165–208

    PubMed  CAS  Google Scholar 

  • Bassett CAL (1968) Biologic significance of piezoelectricity. Calcif Tissue Res 1: 252–272

    Article  PubMed  CAS  Google Scholar 

  • Baud CA (1976) Osteocyte, osteocytic functions and morphometry of periosteocytic lacunae. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montagu, Paris, pp 429–432.

    Google Scholar 

  • Baud CA, Auil E (1971) Osteocyte differential count in normal human alveolar bone. Acta Anat 78:321–327

    Article  PubMed  CAS  Google Scholar 

  • Baylink DJ, Wergedal JE (1971) Bone formation by osteocytes. Am J Physiol 221: 669–678

    PubMed  CAS  Google Scholar 

  • Belanger LF (1969) Osteocytic osteolysis. Calcif Tissue Res 4:1–12

    Article  PubMed  CAS  Google Scholar 

  • Betts F, Blumenthal NC, Posner AS, Becker GL, Lehringer AL (1975) The atomic structure of intercellular amorphous calcium phosphate deposits. Proc Natl Acad Sci USA 72:2088–2090

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20: 33–50

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E (1981) New knowledge on the origin, function and fate of osteoclasts. Clin Orthop 158: 252–269

    PubMed  Google Scholar 

  • Bordier Ph J, Marie P, Miravet L, Ryckewaert A, Rasmussen H (1976) Morphological and morphometrical characteristics of the mineralisation front. A vitamin D regulated sequence of the bone remodeling. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montagu, Paris, pp 335–354

    Google Scholar 

  • Borle AB (1967) Membrane transfer of calcium. Clin Orthop Relat Res 52: 267–291

    Article  PubMed  CAS  Google Scholar 

  • Boskey AL (1978) The role of calcium-phospholipid-phosphate complexes in tissue mineralisation. Metab Bone Dis Relat Res 1:137–142

    Article  CAS  Google Scholar 

  • Boskey AL, Posner AS (1977) The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif Tissue Res 23:251–258

    Article  PubMed  CAS  Google Scholar 

  • Boyde A (1972) Scanning electron microscope studies of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd edn, vol 1. Academic, New York, pp 259–310

    Google Scholar 

  • Boyde A (1981) Evidence against ‘osteocytic osteolysis’. In: Jee WSS, Parfitt AM (eds) Bone histomorphometry. 3rd international workshop. Metab Bone Dis Relat Res 2 (Suppl): 239–255

    Google Scholar 

  • Brighton CT (1978) Structure and function of the growth plate. Clin Orthop 136:22–32

    PubMed  Google Scholar 

  • Brighton CT, Hunt RM (1974) Mitochondrial calcium and its role in calcification. Histochemical localisation of calcium in electron micrographs of the epiphyseal growth plate with K-pyroantimonate. Clin Orthop 100:406–416

    Article  PubMed  CAS  Google Scholar 

  • Brighton CT, Hunt RM (1976) Histochemical localization of calcium in growth plate mitochondria and matrix vesicles. Fed Proc 35:143–147

    PubMed  CAS  Google Scholar 

  • Brighton CT, Ray RD, Soble LW, Kuettner KE (1969) In vitro epiphyseal-plate growth in various oxygen tensions. J Bone Joint Surg [Am] 51: 1383–1396

    CAS  Google Scholar 

  • Brighton CT, Sugioka Y, Hunt RM (1973) Cytoplasmic structures of the epiphyseal-plate chondrocytes. Quantitative evaluation using electron micrographs of rat costochondral junctions with special reference to the fate of hypertrophic cells. J Bone Joint Surg [Am] 55: 771–784

    CAS  Google Scholar 

  • Cameron DA, Robinson RA (1958) The presence of crystals in the cytoplasm of large cells adjacent to sites of bone resorption. J Bone Joint Surg [Am] 40:414–418

    Google Scholar 

  • Cecil RNA, Anderson HC (1978) Freeze-fracture studies of matrix vesicle calcification in epiphyseal growth plate. Metab Bone Dis Relat Res 1:89–95

    Article  Google Scholar 

  • Chambers TJ (1980) The cellular basis of bone resorption. Clin Orthop 151: 283–293

    PubMed  Google Scholar 

  • Chambers TJ, Revell PA, Fuller K, Athanasou NA (1984) Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 66: 383–399

    PubMed  CAS  Google Scholar 

  • Chung SMK, Batterman SC, Brighton CT (1976) Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg [Am] 58:94–103

    CAS  Google Scholar 

  • Courpron P, Lepine P, Arlet M, Lips P, Meunier PJ (1980) Mechanisms underlying the reduction in age of the mean wall thickness of trabecular basic structure unit (BSU) of human iliac bone. In: Jee WSS, Parfitt AM (eds) Bone histomorphometry. 3rd international workshop. Metab Bone Dis Relat Res 2 (Suppl): 323–329

    Google Scholar 

  • Dudley RH, Spiro D (1961) The fine structure of bone cells. J Biophys Biochem Cytol 11: 627–671

    Article  PubMed  CAS  Google Scholar 

  • Ellis HA (1981) Metabolic bone disease. In: Anthony PP, MacSween RNM (eds) Recent advances in histopathology, vol 11. Churchill Livingstone, Edinburgh, pp 185–202

    Google Scholar 

  • Enlow DH, Conklin JL (1964) A study of lipid distribution in compact bone. Anat Res 148:279

    Google Scholar 

  • Fleisch H, Bisaz S (1962) Mechanism of calcification: Inhibitory role of pyrophosphate. Nature 195:911

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ (1976) Precursors of mechanocytes. Int Rev Cytol 47: 327–359

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Petrakova KU, Kurolesova AI, Frolova GP (1968) Heterotopic transplants of bone marrow-analysis of precursor cells of osteogenic and hematopoietic tissues. Transplantation 6:230–246

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Tissue Kinet 3: 393–402

    PubMed  CAS  Google Scholar 

  • Frost HM (1964) Dynamics of bone remodelling. In: Frost HM (ed) Bone biodynamics. Little, Brown, Boston, pp 315–333

    Google Scholar 

  • Frost HM (1976) A method of analysis of trabecular bone dynamics. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montague, Paris, pp 445–476

    Google Scholar 

  • Glauert A, Mayo CR (1973) The study of three dimensional structure relationships in connective tissues by high voltage electron microscopy. J Microsc 97: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Glimcher MJ (1976) Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. In: Aurbach GD (ed) Handbook of physiology-Endocrinology VII. Williams and Wilkins, Baltimore, pp 25–116

    Google Scholar 

  • Gonzales F, Karnovsky MJ (1961) Electron microscopy of osteoclasts in healing fractures of rat bone. J Biophys Biochem Cytol 9: 299–316

    Article  PubMed  CAS  Google Scholar 

  • Hancox NM (1972) Biological structure and function. No. 1. In: Harrison RJ, McMinn RMH (eds) Biology of bone. Cambridge University Press, Cambridge

    Google Scholar 

  • Harris WH, Haywood EA, Lavorgna J, Hamblen DL (1968) Spatial and temporal variations in cortical bone formation in dogs. J Bone Joint Surg [Am] 50: 1118–1128

    Google Scholar 

  • Heersche JNM (1978) Mechanism of osteoclastic bone resorption: a new hypothesis. Calcif Tissue Res 26:81–84

    Article  PubMed  CAS  Google Scholar 

  • Hodge AJ, Petraska JA (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic, New York, pp 289–300

    Google Scholar 

  • Holtrop ME (1972) The ultrastructure of the epiphyseal plate. II The hypertrophic chondrocyte. Calcif Tissue Res 9:140–151

    Article  PubMed  CAS  Google Scholar 

  • Holtrop ME (1976) Quantitation of the ultrastructure of the osteoclast for the evaluation of cell function. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montagu, Paris, pp 133–145

    Google Scholar 

  • Irving JT (1963) The sudanophilic material in the early stages of calcification. Arch Oral Biol 8:735–745

    Article  PubMed  CAS  Google Scholar 

  • Irving JT, Wuthier RE (1968) Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin Orthop 56:237–260

    PubMed  CAS  Google Scholar 

  • Jande SS, Belanger LF (1973) The life cycle of the osteocyte. Clin Orthop 94:281–305

    PubMed  Google Scholar 

  • Jowsey J, Kelley PJ, Riggs BL, Bianco AJ, Scholz DA, Gershon-Cohen J (1965) Quantitative microradiographic studies of normal and osteoporotic bone. J Bone Joint Surg [Am] 47: 785–806

    CAS  Google Scholar 

  • Kahn AJ, Stewart CC, Teitelbaum SL (1978) Contact-mediated bone resorption by human monocytes in vitro. Science 199:988–990

    Article  PubMed  CAS  Google Scholar 

  • Kashiwa HK, Homorous J (1971) Mineralised spherules in the cells and matrix of calcifying cartilage from developing bone. Anat Res 170: 119–128

    Article  CAS  Google Scholar 

  • Katchburian E (1973) Membrane-bound bodies as initiators of mineralization of dentine. J Anat 116: 285–302

    PubMed  CAS  Google Scholar 

  • Katz EP, Li S-T (1973a) The intermolecular space of reconstituted collagen fibrils. J Mol Biol 73: 351–369

    Article  PubMed  CAS  Google Scholar 

  • Katz EP, Li S-T (1973b) Structure and function of bone collagen fibrils. J Mol Biol 80:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kember NF (1960) Cell division in endochondral ossification; a study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg [Br] 42: 824–839

    Google Scholar 

  • Kuhlman RE (1960) A microchemical study of the developing epiphyseal plate. J Bone Joint Surg [Am] 42:457–466

    Google Scholar 

  • Kuhlman RE (1965) Phosphatases in epiphyseal cartilage-their possible role in tissue synthesis. J Bone Joint Surg [Am] 47: 545–550

    CAS  Google Scholar 

  • Lee SL, Glimcher MJ (1981) Purification, composition and 31PNMR spectroscopic properties of a noncolla- genous phosphoprotein isolated from chicken bone matrix. Calcif Tissue Int 33: 385–394

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium transport. Biochem J 119:129–138

    PubMed  CAS  Google Scholar 

  • Loutit JF, Nisbet NW (1979) Resorption of bone. Lancet II: 26–29

    Article  PubMed  CAS  Google Scholar 

  • Marks SC (1983) The origin of osteoclasts: evidence, clinical implications and investigative challenges of an extra-skeletal source. J Pathol 12:226–256

    Google Scholar 

  • Martin JH, Matthews JL (1969) Mitochondrial granules in chondrocytes. Calcif Tissue Res 3:184–193

    Article  PubMed  CAS  Google Scholar 

  • Martin JH, Matthews JL (1970) Mitochondrial granules in chondrocytes, osteoblasts and osteocytes. Clin Orthop 68:273–278

    PubMed  CAS  Google Scholar 

  • Matsuzawa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem 19: 801–808

    Article  PubMed  CAS  Google Scholar 

  • Milch RA, Hall DP, Tobie JE (1958) Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg [Am] 40: 897–910

    Google Scholar 

  • Miller A, Wray TS (1971) Molecular packing in collagen. Nature 230:437–439

    Article  PubMed  CAS  Google Scholar 

  • Mundy CR, Altman AJ, Gondek MD, Bandelin JG (1977) Direct resorption of bone by human monocytes. Science 196:1109–1111

    Article  PubMed  CAS  Google Scholar 

  • Mundy CR, Varani J, Orr W, Gondek MD, Ward PA (1978) Resorbing bone is chemotactic for monocytes. Nature 275:132–135

    Article  PubMed  CAS  Google Scholar 

  • Nogemi H, Oohira A (1984) Postnatal new bone formation. Clin Orthop 184:106–113

    Google Scholar 

  • Odutaga AA, Prout RES (1974) Lipid analysis of human enamel and dentine. Arch Oral Biol 19: 729–731

    Article  Google Scholar 

  • Owen M (1970) The origin of bone cells. Int Rev Cytol 28:215–238

    Google Scholar 

  • Owen M (1980) The origin of bone cells in the postnatal organism. Arthritis Rheum 23:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Owen M (1983) Bone cell differentiation. In: Dixon AStJ, Russell RGG, Stamp TCB (eds) Osteoporosis. A multidisciplinary problem. Royal Society of Medicine International Congress and Symposium Series, No 55. Academic Press and Royal Society of Medicine, London, 25–29

    Google Scholar 

  • Parfitt AM (1976) The actions of parathyroid hormone on bone: relation to bone remodelling and turnover, calcium homeostasis and metabolic bone disease. Metabolism 25: 809–844

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4:1–6

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Villanueva AR, Crouch MM, Mathews CHE, Duncan M (1976) Classification of osteoid seams by combined use of cell morphology and tetracycline labelling. Evidence for intermittency of mineralization. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montagu, Paris, pp 299–310

    Google Scholar 

  • Peress NS, Anderson HC, Sajdera SW (1974) The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res 14: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Relat Res 1:179–183

    Article  CAS  Google Scholar 

  • Price PA, Baukol SA (1981) 1,25 dihydroxyvitamin D3 increases serum levels of the vitamin-K dependant bone protein. Biochem Biophys Res Commun 99: 928–935

    Article  PubMed  CAS  Google Scholar 

  • Price PA, Parthemore JG, Deftos LJ (1980) New biochemical marker for bone metabolism: measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 66: 878–883

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JJ (1952) A cytological and histochemical study of bone and cartilage formation in the rat. J Anat 86:259–277

    PubMed  CAS  Google Scholar 

  • Rabinowitch AL, Anderson HC (1976) Biogenesis of matrix vesicles in cartilage growth plates. Fed Proc 35:112–116

    Google Scholar 

  • Raisz LG (1976) Mechanisms of bone resorption. In: Aurbach GD (ed) Handbook of physiology- Endocrinology VII. Parathyroid gland. Williams and Wilkins, Baltimore, pp 117–136

    Google Scholar 

  • Raisz LG, Kream BE (1983a) Regulation of bone formation. N Engl J Med 309:29–35

    Article  PubMed  CAS  Google Scholar 

  • Raisz LG, Kream BE (1983b) Regulation of bone formation. N Engl J Med 309:83–89

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen J, Bordier P (1974) Bone cells-morphology and physiology. In: The physiology and cellular basis of metabolic bone disease. Williams and Wilkins, Baltimore, pp 9–69

    Google Scholar 

  • Russell RGG, Kanis JA, Gowen M, Gallagher JA, Beresford J, Guilland-Cumming D, Coulton LA, Preston CJ, Brown BL, Sharrard M, Beard DJ (1983) Cellular control of bone formation and repair. In: Dixon AStJ, Russell RGG, Stamp TCB (eds) Osteoporosis. A multidisciplinary problem. Royal Society Medicine International Congress and Symposium Series No 55. Academic Press and Royal Society of Medicine, London, pp 31–42

    Google Scholar 

  • Sayegh FS, Solomon GC, Davis RW (1974) Ultrastructure of intracellular mineralization in the deer’s antler. Clin Orthop 99:267–284

    Article  PubMed  Google Scholar 

  • Schenk RK, Merz WA, Muller J (1969) A quantitative histological study on bone resorption in human cancellous bone. Acta Anat 74:44–53

    Article  PubMed  CAS  Google Scholar 

  • Scott BL, Pease DC (1956) Electron microscopy of the epiphyseal apparatus. Anat Rec 126:465–495

    Article  PubMed  CAS  Google Scholar 

  • Shapiro F, Holtrop ME, Glimcher MJ (1977) Organisation and cellular biology of the perichondrial ossification groove of Ranvier. J Bone Joint Surg [Am] 59: 703–723

    CAS  Google Scholar 

  • Shapiro IM (1970) The association of phospholipids with anorganic bone. Calcif Tissue Res 5:13–20

    Article  PubMed  CAS  Google Scholar 

  • Shapiro IM, Burke A, Lee NH (1976) Heterogeneity of chondrocyte mitochondria. A study of the Ca2+ concentration and density banding characteristics of normal and rachitic cartilage. Biochim Biophys Acta 451: 583–591

    Article  PubMed  CAS  Google Scholar 

  • Silberman M, Frommer J (1974) Initial locus of calcification in chondrocytes. Clin Orthop 98:288–293

    Article  Google Scholar 

  • Spycher MA, Moore H, Ruettner JR (1969) Electron microscopic investigations on aging and osteoarthritic human articular cartilage. Z Mikrosk Anat Forsch 98: 512–524

    Article  CAS  Google Scholar 

  • Sutfin LV, Holtrop ME, Ogilvie RE (1971) Microanalysis of individual mitochondrial granules with diameters less than 1,000 angstroms. Science 174: 947–949

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum SL, Nichols SH (1976) Tetracycline-based morphometric analysis of trabecular bone kinetics. In: Meunier PJ (ed) Bone histomorphometry. 2nd international workshop. Armour Montagu, Paris, pp 311–319

    Google Scholar 

  • Teitelbaum SL, Stewart CC, Kahn AJ (1979) Rodent peritoneal macrophages as bone resorbing cells. Calcif Tissue Int 27: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Conn KM (1976) Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif Tissue Res 22:149–157

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Kleinmann HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  • Thyberg J, Friberg U (1972) Electron microscopic enzyme histochemical studies on the cellular genesis of matrix vesicles in epiphyseal plate. J Ultrastruct Res 41:43–59

    Article  PubMed  CAS  Google Scholar 

  • Tonna EA (1961) The cellular complement of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J Biophys Biomed Cytol 9: 813–824

    Article  CAS  Google Scholar 

  • Urist MR (1981) New bone formation induced in post fetal life by bone morphogenetic protein. In: Becker RA (ed) Mechanisms of growth control. Thomas, Springfield, Ill, pp 406–434

    Google Scholar 

  • Urist MR, Mikulski AJ (1979) A soluble morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med 162:48–53

    PubMed  CAS  Google Scholar 

  • Urist MR, Nakagawa M, Nakata N, Nogemi H (1978) Experimental myositis ossificans: cartilage and bone formation in muscle in response to a diffusible bone matrix-derived morphogen. Arch Pathol Lab Med 102: 312–316

    PubMed  CAS  Google Scholar 

  • Urist MR, Lietze A, Mizutani H, Takagi K, Triffitt JT, Amstatz J, De Lange R, Termine J, Finerman GAM (1982) A bovine low molecular weight bone morphogenetic protein (BMP) fraction. Clin Orthop 162:219–232

    PubMed  CAS  Google Scholar 

  • Vittali P (1968) Osteocytic activity. Clin Orthop 56: 213–226

    PubMed  CAS  Google Scholar 

  • Vogel JJ, Boyan-Salyers BD (1976) Acidic lipids associated with the local mechanism of calcification, a review. Clin Orthop 118: 230–241

    CAS  Google Scholar 

  • Vogel JJ, Boyan-Salyers B, Campbell MM (1978) Protein-phospholipid interactions in biologic calcification. Metab Bone Dis Relat Res 1:149–153

    Article  CAS  Google Scholar 

  • Walker DG (1975) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190: 784–785

    Article  PubMed  CAS  Google Scholar 

  • Wuthier RE (1968) Lipids of mineralizing epiphyseal tissues in the bovine fetus. J Lipid Res 9: 68–78

    PubMed  CAS  Google Scholar 

  • Wuthier RE (1976) Lipids of matrix vesicles. Fed Proc 35:117–121

    PubMed  CAS  Google Scholar 

  • Yoneda T, Mundy GR (1979a) Prostaglandins are necessary for osteoclast activating factor production by activated peripheral blood leukocytes. J Exp Med 149:279–283

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Mundy GR (1979b) Monocytes regulate osteoclast activating factor production by releasing prostaglandins. J Exp Med 150: 338–350

    Article  PubMed  CAS  Google Scholar 

  • Young RW (1962) Cell proliferation and specialization during endochondral osteogenesis in the rat. J Cell Biol 14:357–370

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Revell, P.A. (1986). Normal Bone. In: Pathology of Bone. Springer, London. https://doi.org/10.1007/978-1-4471-1377-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1377-5_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1379-9

  • Online ISBN: 978-1-4471-1377-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics