Skip to main content

Physical Models for Silicon VLSI

  • Chapter
Semiconductor Device Modelling

Abstract

Device Modeling based on the self-consistent solution of fundamental semiconductor equations dates back to the famous work of Gummel in 1964 [31]. Since then numerical device modeling has been applied to nearly all important devices. For some citations regarding the history of modeling the interested reader is refered to [55].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad N., Arora V.K., Velocity-Field Profile of n-Silicon: A Theoretical Analysis, IEEE Trans.Electron Devices, Vol.ED-33, pp.1075–1077, 1986.

    Article  Google Scholar 

  2. Ali-Omar M., Reggiani L., Drift and Diffusion of Charge Carriers in Silicon and Their Empirical Relation to the Electric Field, Solid-State Electron., Vol.30, pp.693–697, 1987.

    Article  Google Scholar 

  3. Aoki M., Yano K., Masuhara T., Ikeda S., Meguro S., Optimum Crystallographic Orientation of Submicron CMOS Devices Proc.IEDM, pp.577–580, 1985.

    Google Scholar 

  4. Aoki M., Hanamura S., Masuhara T., Yano K., Performance and Hot-Carrier Effects of Small CRYO-CMOS Devices IEEE Trans.Electron Devices, Vol.ED-34, pp.8–18, 1987.

    Article  Google Scholar 

  5. Aoki M., Yano K., Masuhara T., Ikeda S., Meguro S., Optimum Crystallographic Orientation of Submicrometer CMOS Devices Operated at Low Temperatures, IEEE Trans.Electron Devices, Vol.ED-34, pp.52–57, 1987.

    Article  Google Scholar 

  6. Arora N.D., Hauser J.R., Roulston D.J., Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature, IEEE Trans.Electron Devices, Vol.ED-29, pp.292–295, 1982.

    Article  Google Scholar 

  7. Arora N.D., Gildenblat G.S., A Semi-Emperical Model of the MOSFET Inversion Layer Mobility for Low-Temperature Operation, IEEE Trans.Electron Devices, Vo1.ED-34, pp.89–93, 1987.

    Article  Google Scholar 

  8. Baccarani G., Wordeman M.R., Transconductance Degradation in Thin-Oxide MOSFET’s, Proc.IEDM, pp.278–281, 1982.

    Google Scholar 

  9. Baccarani G., Physics of Submicron Devices, Proc.VLSI Process and Device Modeling, pp.l–23, Katholieke Universiteit Leuven, 1983.

    Google Scholar 

  10. Baccarani G., Wordeman M.R., Transconductance Degradation in Thin-Oxide MOSFET’s, IEEE Trans.Electron Devices, Vol.ED-30, pp.1295–1304, 1983.

    Article  Google Scholar 

  11. Baccarani G., Wordeman M.R., An Investigation of Steady-State Velocity Overshoot in Silicon, Solid-State Electron., Vol.28, pp.407–416, 1985.

    Article  Google Scholar 

  12. Blakemore J.S., Approximations for Fermi-Dirac Integrals, especially the Function F1/2(x) used to Describe Electron Density in a Semiconductor, Solid-State Electron., Vol.25, pp.1067–1076, 1982.

    Article  Google Scholar 

  13. Blotekjaer K., Transport Equations for Electrons in Two-Valley Semiconductors IEEE Trans.Electron Devices, Vol.ED-17, pp.38–47, 1970.

    Article  Google Scholar 

  14. Canali C., Ottaviani G., Saturation Values of the Electron Drift Velocity in Silicon between 300K and 4.2K Physics Lett., Vol.32A, pp.147–148, 1970.

    Article  Google Scholar 

  15. Canali C., Majni G., Minder R., Ottaviani G., Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature IEEE Trans.Electron Devices, Vol.ED-22, pp.1045–1047, 1975.

    Article  Google Scholar 

  16. Caughey D.M., Thomas R.E., Carrier Mobilities in Silicon Empirically Related to Doping and Field Proc.IEEE, Vol.52, pp.2192–2193, 1967.

    Article  Google Scholar 

  17. Cheng D.Y., Hwang C.G., Dutton R.W., PISCES-MC: A Multiwindow, Multimethod 2-D Device Simulator IEEE Trans.CAD of Integrated Circuits and Systems, Vol.CAD-7, pp.1017–1026, 1988.

    Article  Google Scholar 

  18. Chrzanowska-Jeske M., Jaeger R.C., Modeling of Temperature Dependent Transport Parameters for Low Temperature Bipolar Transistor Simulation, Proc.Symposium on Low Temperature Electronics and High Temperature Superconductors, The Electrochemical Society, Vol.88–9, pp.30–38, 1988.

    Google Scholar 

  19. Cody W.J., Tiiacher H.C., Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders -1/2, 1/2 and 3/2 Math.Comp., Vol.21, pp.30–40, 1967.

    Google Scholar 

  20. Crowell C.R., Sze S.M., Temperature Dependence of Avalanche Multiplication in Semiconductors Appl.Phys.Lett., Vol.9, pp.242–244, 1966.

    Article  Google Scholar 

  21. Debye P.P., Conwell E.M., Electrical Properties of N-Type Germanium Physical Review, Vol.93, pp.693–706, 1954.

    Article  Google Scholar 

  22. Decker D.R., Dunn C.N., Temperature Dependence of Carrier Ionization Rates and Saturated Velocities in Silicon J.Electronic Mat., Vol.4, pp.527–547, 1975.

    Article  Google Scholar 

  23. Dorkel J.M., Leturcq Ph., Carrier Mobilities in Silicon Semi-Empirically Related to Temperature, Doping and Injection Level Solid-State Electron., Vol.24, pp.821–825, 1981.

    Article  Google Scholar 

  24. Dziewior J., Schmid W., Auger Coefficients for Highly Doped and Highly Excited Silicon Appl.Phys.Lett., Vol.31, pp.346–348, 1977.

    Article  Google Scholar 

  25. Faricelli J., Private Communication 1987.

    Google Scholar 

  26. Frey J. Transport Physics for VLSI in: Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp.51–57, Boole Press, Dublin 1981.

    Google Scholar 

  27. Gaensslen F.H., Jaeger R.C., Walker J.J., Low-Temperature Threshold Behavior of Depletion Mode Devices Proc.IEDM, pp.520–524, 1976.

    Google Scholar 

  28. Gaensslen F.H., Hideout V.L., Walker E.J., Walker J.J., Very Small MOSFET’s for Low Temperature Operation IEEE Trans.Electron Devices, Vol.ED-24, pp.218–229, 1977.

    Article  Google Scholar 

  29. Gaensslen F.H., Jaeger R.C., Temperature Dependent Threshold Behaviour of Depletion Mode MOSFET’s Solid-State Electron., Vol.22, pp.423–430, 1979.

    Article  Google Scholar 

  30. Gaensslen F.H., Jaeger R.C., Behavior of Electrically Small Depletion Mode MOSFET’s at Low Temperature Solid-State Electron., Vol.24, pp.215–220, 1981.

    Article  Google Scholar 

  31. Gummel H K, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations IEEE Trans.Electron Devices, Vol.ED-11, pp.455–465, 1964.

    Article  Google Scholar 

  32. Hänsch W., Selberherr S., MINIMOS 3: A MOSFET Simulator that Includes Energy Balance IEEE Trans.Electron Devices, Vol.ED-34, pp.1074–1078, 1987.

    Article  Google Scholar 

  33. Henning A.K., Chan N., Plummer J D, Substrate Current in n-Channel and p-Channel MOSFET’s between 77K and 300K: Characterization and Simulation Proc.IEDM, pp.573–576, 1985.

    Google Scholar 

  34. Henning A.K., Chan N.N., Watt J.T., Plummer J.D., Substrate Current at Cryogenic Temperatures: Measurements and a Two-Dimensional Model for CMOS Technology IEEE Trans.Electron Devices, Vol.ED-34, pp.64–74, 1987.

    Article  Google Scholar 

  35. Hess K., Iafrate G.J., Theory and Applications of Near Ballistic Transport in Semiconductors Proc.IEEE, Vol.76, pp.519–532, 1988.

    Article  Google Scholar 

  36. Heywang W., Pötzl H., Bandstruktur and Stromtransport Springer, Berlin, 1976.

    Google Scholar 

  37. Hiroki A., Odanaka S., Ohe K., Esaki H., A Mobility Model for Submicrometer MOSFET Device Simulations IEEE Electron Device Lett., Vol.EDL-8, pp.231–233, 1987.

    Article  Google Scholar 

  38. Hiroki A., Odanaka S., Ohe K., Esaki H., A Mobility Model for Submicrometer MOSFET Simulations Including HotCarrier-Induced Device Degradation IEEE Trans.Electron Devices, Vol.ED-35, pp.1487–1493, 1988.

    Article  Google Scholar 

  39. Jaeger R.C., Private Communication October 1987.

    Google Scholar 

  40. Jaeger R.C., Gaensslen F.H., Low Temperature MOS Microelectronics Proc.Symposium on Low Temperature Electronics and High Temperature Superconductors, The Electrochemical Society, Vol.88–9, pp.43–54, 1988.

    Google Scholar 

  41. Jaggi R., Weibel H., High-Field Electron Drift Velocities and Current Densities in Silicon Helv.Phys.Acta, Vol.42, pp.631–632, 1969.

    Google Scholar 

  42. Jaggi R., High-Field Drift Velocities in Silicon and Germanium Helv.Phys.Acta, Vol.42, pp.941–943, 1969.

    Google Scholar 

  43. Kamgar A., Miniaturization of Si MOSFET’s at 77K, IEEE Trans.Electron Devices, Vol.ED-29, pp.1226–1228, 1982.

    Article  Google Scholar 

  44. Kinugawa M., Kakumu M., Usami T., Matsunaga J., Effects of Silicon Surface Orientation on Submicron CMOS Devices Proc.IEDM, pp.581–584, 1985.

    Google Scholar 

  45. Lau D., Gildenblat G., Sodini G.G., Nelson D.E., Low-Temperature Substrate Current Characterization of n-Channel MOSFET’s, Proc.IEDM, pp.565–568, 1985.

    Google Scholar 

  46. Li S.S., Thurber W.R., The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon, Solid-State Electron., Vol.20, pp.609–616, 1977.

    Article  Google Scholar 

  47. Nishida T., Sah C.T., A Physically Based Mobility Model for MOSFET Numerical Simulation, IEEE Trans.Electron Devices, Vol.ED-34, pp.310–320, 1987.

    Article  Google Scholar 

  48. Okuto Y., Crowell C.R., Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions, Solid-State Electron., Vol.18, pp.161–168, 1975.

    Article  Google Scholar 

  49. Robertson P.J., Dumin D J, Ballistic Transport and Properties of Submicrometer Silicon MOSFET’s from 300 to 4.2K, IEEE Trans.Electron Devices, Vol.ED-33, pp.494–498, 1986.

    Article  Google Scholar 

  50. Sai-Halasz G.A., Processing and Characterization of Ultra Small Silicon Devices, Proc.ESSDERC Conf., pp.71–80, 1987.

    Google Scholar 

  51. Schlitz A., Selberherr S., Pötzl H., Analysis of Breakdown Phenomena in MOSFET’s, IEEE Trans.CAD of Integrated Circuits and Systems, Vol.CAD-1, pp.77–85, 1982.

    Google Scholar 

  52. Seavey M., Private Communication, 1987.

    Google Scholar 

  53. Seeger K., Semiconductor Physics, Springer, Wien, 1973.

    Google Scholar 

  54. Selberherr S., Schlitz A., Pötzl H., MINIMOS - A Two-Dimensional MOS Transistor Analyzer IEEE Trans.Electron Devices, Vol.ED-27, pp.1540–1550, 1980.

    Article  Google Scholar 

  55. Selberherr S., Analysis and Simulation of Semiconductor Devices Springer, Wien New-York, 1984.

    Google Scholar 

  56. Selberherr S., Griebel W., Pötzl H., Transport Physics for Modeling Semiconductor Devices in: Simulation of Semiconductor Devices and Processes, pp.133–152, Pineridge Press, Swansea, 1984.

    Google Scholar 

  57. Selberherr S., Low Temperature Mos Device Modeling, Proc.Symposium on Low Temperature Electronics and High Temperature Superconductors, The Electrochemical Society, Vol.88–9, pp.43–86, 1988.

    Google Scholar 

  58. Shahidi G.G., Antoniadis D.A., Smith H.I., Electron Velocity Overshoot at 300K and 77K in Silicon MOSFET’s with Sub-micron Channel Length Proc.IEDM, pp.824–825, 1986.

    Google Scholar 

  59. Solomon P.M., Options for High Speed Logic at 77K, Proc.Symposium on Low Temperature Electronics and High Temperature Superconductors, The Electrochemical Society, Vol.88–9, pp.3–17, 1988.

    Google Scholar 

  60. Sugano T., Low Temperature Electronics Research in Japan, Proc.Symposium on Low Temperature Electronics and High Temperature Superconductors, The Electrochemical Society, Vol.88–9, pp.18–29, 1988.

    Google Scholar 

  61. Sun Y-C.J., Taur Y., Dennard R.H., Klepner S.P., Submicrometer-Channel CMOS for Low-Temperature Operation IEEE Trans.Electron Devices, Vol.ED-34, pp.19–27, 1987.

    Article  Google Scholar 

  62. Sutherland A.D., An Improved Empirical Fit to Baraff’s Universal Curves for the Ionization Coefficients of Electron and Hole Multiplication in Semiconductors IEEE Trans.Electron Devices, VOl.ED-27, pp.1299–1300, 1980.

    Article  Google Scholar 

  63. Sze S.M., Physics of Semiconductor Devices Wiley, New York, 1969.

    Google Scholar 

  64. Watt J.T., Fishbein B.J., Plummer J D, A Low-Temperature NMOS Technology with Cesium-Implanted Load Devices IEEE Trans.Electron Devices, Vol.ED-34, pp.28–38, 1987.

    Google Scholar 

  65. Woo J.C.S., Plummer J. D., Short Channel Effects in MOSFET’s at Liquid-Nitrogen Temperature, IEEE Trans.Electron Devices, Vol.ED-33, pp.1012–1019, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selberherr, S. (1989). Physical Models for Silicon VLSI. In: Snowden, C.M. (eds) Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-1033-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1033-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1259-4

  • Online ISBN: 978-1-4471-1033-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics