Skip to main content
Book cover

Fractals pp 185–206Cite as

Conformal Multifractality of Random Walks, Polymers, and Percolation in Two Dimensions

  • Conference paper

Abstract

Our aim is to derive from conformal invariance the multifractal spectrum of the harmonic measure near a random fractal, such as the frontier of a random walk, i.e., a Brownian motion, a self-avoiding walk, or a percolation cluster. First we consider the related problem of L planar random walks (or Brownian motions) of large time t, starting at neighboring points, and the probability \(P_L (t) \approx t^{ - \zeta _L } \) that their paths do not intersect. By a 2D quantum gravity method, i.e., a non linear map onto a random Riemann surface, the former conjecture that \(\zeta _N = \frac{1}{{24}}(4L^2 - 1)\) is established. This also applies to the half-plane where \({\tilde\zeta} _{N} = \frac{L}{3}(1 + 2L)\). The non-intersection exponents of unions of independent paths are obtained from generalization of the above formulae to non integer or non rational values of L. In particular, Mandelbrot’s conjecture for the Hausdorff dimension D H = 4/3 of the frontier of a Brownian path follows from \(L = \frac{3}{2}\) as \(D_H = 2 - 2\zeta _{3/2} \). The same techniques apply to the harmonic measures (or electrostatic potential, or diffusion field) near a RW or a SAW, or near a critical percolation cluster, whose moments exhibit a multifractal spectrum. The generalized dimensions D (n) as well as the multifractal functions f (α) are derived, and are shown to be all identical for a Brownian motion, a polymer, or a percolation cluster. These are examples of exact conformal multifractality. They are generalized to Potts clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Symanzyk (1972). In Local Quantum Theory, edited by R. Jost (Academic, London, New-York, 1969); RG. de Gennes, Phys. Lett. A38, 339.

    Google Scholar 

  2. M. Aizenman (198l). Phys. Rev. Lett. 47, 1.

    Article  MathSciNet  Google Scholar 

  3. M. Aizenman (1982). Commun. Math. Phys. 86, 1.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.C. Brydges, J. Fröhlich and T. Spencer (1982). Commun. Math. Phys. 83, 123.

    Article  Google Scholar 

  5. B. Mandelbrot (1982): The fractal geometry of nature. New-York, Freeman.

    MATH  Google Scholar 

  6. G.F. Lawler (1982). Commun. Math. Phys. 86, 539.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.F. Lawler (1991): Intersection of Random Walks. Boston, Birkhäuser.

    Google Scholar 

  8. M. Aizenman (1985). Commun. Math. Phys. 97, 91.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Felder and J. Fröhlich, ibid., 111; G.F. Lawler, ibid., 583.

    Google Scholar 

  10. B. Duplantier (1987). Commun. Math. Phys. 117, 279.

    Article  MathSciNet  Google Scholar 

  11. B. Duplantier and K.-H. Kwon (1988). Phys. Rev. Lett. 61, 2514.

    Article  Google Scholar 

  12. B. Li and A. D. Sokal (1990). J. Stat. Phys. 61 723.

    Article  MathSciNet  Google Scholar 

  13. E.E. Puckette and W. Werner (1996). Elect. Comm. in Probab. 1, 5.

    MathSciNet  Google Scholar 

  14. K. Burdzy and G.F. Lawler (1990). Probab. Th. Rel. Fields 84, 393.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.F. Lawler (1990). Ann. Probab. 18, 981.

    Article  MathSciNet  MATH  Google Scholar 

  16. B.B Mandelbrot (1974). J. Fluid. Mech. 62, 331.

    Article  MATH  Google Scholar 

  17. H.G.E. Hentschel and I. Procaccia (1983). Physica (Amsterdam) 8D, 835.

    MathSciNet  Google Scholar 

  18. U. Frisch and G. Parisi (1985). In Proceedings of the International School of Physics “Enrico Fermi”, course LXXXVIII, edited by M. Ghil (North-Holland, New York) p. 84.

    Google Scholar 

  19. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman (1986). Phys. Rev. A33, 1141.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov (1984). Nucl. Phys. B241, 333.

    Article  MathSciNet  Google Scholar 

  21. D. Friedan, J. Qiu, and S. Shenker (1984). Phys. Rev. Lett. 52, 1575.

    Article  MathSciNet  Google Scholar 

  22. B. Nienhuis (1987). In Phase transition and critical phenomena, vol. 11, ed. C. Domb and J.L. Lebowitz (Academic, London).

    Google Scholar 

  23. B. Duplantier (1986). Phys. Rev. Lett. 57, 941.

    Article  MathSciNet  Google Scholar 

  24. B. Duplantier (1989). J. Stat. Phys. 54, 581.

    Article  MathSciNet  Google Scholar 

  25. B. Duplantier and H. Saleur (1986). Phys. Rev. Lett. 57, 3179.

    Article  MathSciNet  Google Scholar 

  26. H. Saleur (1986). J. Phys. A19 L807.

    MathSciNet  Google Scholar 

  27. M. Cates and J.M. Deutsch (1987). Phys. Rev. A35, 4907.

    MathSciNet  Google Scholar 

  28. B. Duplantier and A. Ludwig (1991). Phys. Rev. Lett. 66, 247.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Von Ferber (1997). Nucl. Phys. B490, 511

    Google Scholar 

  30. M.E. Cates and T.A. Witten (1986). Phys. Rev. Lett. 56, 2497

    Article  Google Scholar 

  31. . M.E. Cates and T.A. Witten (1987). Phys. Rev. A35, 1809.

    MathSciNet  Google Scholar 

  32. N.G. Makarov (1985). Proc. London Math. Soc. 51, 369.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Aizenman and A. Burchard (to appear). math.FA/981027. In Duke Math. J.

    Google Scholar 

  34. R. Langlands, P. Pouliot and Y. Saint-Aubin (1994). Bull. AMS 30, 1

    Article  MathSciNet  MATH  Google Scholar 

  35. J. L. Cardy (1992). J. Phys. A25, L201.

    MathSciNet  Google Scholar 

  36. M. Aizenman (1998). In Mathematics of Multiscale Materials; the IMA Volumes in Mathematics and its Applications, K.M. Golden et al. eds, Springer-Verlag.

    Google Scholar 

  37. I. Benjamini and O. Schramm (1998). Commun. Math. Phys. 197, 75.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Duplantier (1998). Phys. Rev. Lett. 81, 5489.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Duplantier (1999). Phys. Rev. Lett. 82, 880.

    Article  MathSciNet  Google Scholar 

  40. B. Duplantier (to be published), http://xxx.lanl.gov/cond-mat 9901008.

  41. G.F. Lawler and W. Werner (to be published).

    Google Scholar 

  42. A.M. Polyakov (1987). Mod. Phys. Lett. A2, 893.

    MathSciNet  Google Scholar 

  43. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov (1988). Mod. Phys. Lett. A3, 819.

    MathSciNet  Google Scholar 

  44. A.M. Polyakov (1987): Gauge fields and Strings. Harwood-Academic, Chur.

    Google Scholar 

  45. D.V. Boulatov, et al. (1986). Nucl. Phys. B275, 641.

    Article  MathSciNet  Google Scholar 

  46. F. David (1985). Nucl. Phys. B257, 45, 543.

    Article  Google Scholar 

  47. J. Ambjorn, B. Durhuus and J. Fröhlich, ibid., 433.

    Google Scholar 

  48. V.A. Kazakov (1986). Phys. Lett. A119, 140.

    MathSciNet  Google Scholar 

  49. B. Duplantier and I.K. Rostov (1988). Phys. Rev. Lett. 61, 1436.

    MathSciNet  Google Scholar 

  50. B. Duplantier and I.K. Kostov (1990). Nucl. Phys. B 340, 491.

    Article  MathSciNet  Google Scholar 

  51. F. David (1988). Mod. Phys. Lett. A 3, 1651.

    Article  Google Scholar 

  52. J. Distler and H. Kawai (1988). Nucl. Phys. B321 509.

    MathSciNet  Google Scholar 

  53. I.K. Kostov and M.L. Mehta (1987). Phys. Lett. B189, 118.

    MathSciNet  Google Scholar 

  54. W. Werner (1997). Probab. Th. Rel. Fields 108, 131.

    Article  MATH  Google Scholar 

  55. G.F. Lawler (1996). Elect. Comm. in Probab. 1 (29).

    MathSciNet  MATH  Google Scholar 

  56. J.F. Joanny, L. Leibler and R.C. Ball (1984). J. Chem. Phys. 81, 4640.

    Article  Google Scholar 

  57. C. von Ferber and Y. Holovatch (1997). Europhys. Lett. 39, 31.

    Article  Google Scholar 

  58. C. von Ferber and Y. Holovatch (1997). Phys. Rev. E 56, 6370.

    Article  Google Scholar 

  59. J. Cardy (1984). Nucl. Phys. B240 [FS12], 514.

    Article  Google Scholar 

  60. B.B. Mandelbrot and C.J.G. Evertsz (1990). Nature 348, 143.

    Article  Google Scholar 

  61. G.F. Lawler (1998). To be published.

    Google Scholar 

  62. L. V. Ahlfors (1973): Conformal Invariants. Topics in Geometric Function Theory. McGraw-Hill, New York.

    MATH  Google Scholar 

  63. R.C. Ball and R. Blumenfeld (1991). Phys. Rev. A 44, R828.

    Article  Google Scholar 

  64. R. C. Ball, B. Duplantier and T. C. Halsey (1999). Unpublished.

    Google Scholar 

  65. B. Duplantier (1999). To be published, Isaac Newton Institute preprint.

    Google Scholar 

  66. M. Aizenman, B. Duplantier and A. Aharony (to be published), http://xxx.lanl.gov/cond-mat 9901018.

  67. P. Meakin et al. (1986). Phys. Rev. A 34, 3325

    MathSciNet  Google Scholar 

  68. P. Meakin (1986). ibid. 33, 1365

    Google Scholar 

  69. P. Meakin et al. (1988). In Phase Transitions and Critical Phenomena, vol. 12, edited by C. Domb and J.L. Lebowitz (Academic, London).

    Google Scholar 

  70. P. Meakin and B. Sapoval (1992). Phys. Rev. A 46, 1022.

    Google Scholar 

  71. H. Saleur and B. Duplantier (1987). Phys. Rev. Lett. 58, 2325.

    Article  MathSciNet  Google Scholar 

  72. T. Grossman and A. Aharony (1987). J. Phys. A 20, L1193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Duplantier, B. (1999). Conformal Multifractality of Random Walks, Polymers, and Percolation in Two Dimensions. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds) Fractals. Springer, London. https://doi.org/10.1007/978-1-4471-0873-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0873-3_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1225-9

  • Online ISBN: 978-1-4471-0873-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics