Skip to main content

Nonlinear Descriptor Systems

  • Conference paper
Advances in Control

Summary

Implicit or descriptor systems, F(x′, x, u, t) = 0, arise in many applications. Much of the early work on linear time invariant systems was done in the electrical engineering and control literature. Subsequent nonlinear and time varying results have tended to be in other areas. This paper surveys some of the nonlinear theory and then relates it to several control problems. The emphasis is on nonlinear and linear time varying systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.D. Aplevich. Implicit Linear Systems. Lecture Notes in Control and Information Sciences, Springer-Verlag, 1991.

    Book  MATH  Google Scholar 

  2. U. Ascher and L. Petzold. The numerical solution of delay-differential-algebraic equations of retarded and neutral type. SIAM J. Numer. Anal., 32:1635–1657, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Comp. Math. Appl. Mech. Engr., 1:1–16, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.T. Betts and W.P. Huffman. Mesh Refinement in Direct Transcription Methods for Optimal Control. Optimal Control Applications & Methods, 19:1–21, 1998.

    Article  MathSciNet  Google Scholar 

  5. L.T. Biegler. Optimization strategies for complex process models. Advances in Chemical Engineering, 18:197–256, 1992.

    Article  Google Scholar 

  6. N. Biehn, S.L. Campbell, F. Delebecque, and R. Nikoukhah. Observer Design for Linear Time Varying Descriptor Systems: Numerical Algorithms. In Proc. 37th IEEE-CDC, Tampa, 1998, 3801–3806.

    Google Scholar 

  7. N. Biehn, S.L. Campbell, L. Jay, and T. Westbrook. Some comments on DAE theory for IRK methods and trajectory optimization. preprint, 1999.

    Google Scholar 

  8. J. Birk and M. Zeitz. Extended Luenberger observer for non-linear multivariable systems. Int. J. Control, 47:1823–1836, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. A Bliman and M. Sorine. A system-theoretic approach of systems with hysteresis. Application to friction modelling and compensation. In Proc. ECC93, 1993, 1844–1849.

    Google Scholar 

  10. H.G. Bock, H.X. Phu, and J.P. Schlöder. Extremal solutions of some constrained control problems. Optimization, 35:345–355, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  11. K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, 1996.

    MATH  Google Scholar 

  12. S.L. Campbell. Singular linear systems of differential equations with delays. Applicable Analysis, 11:129–136, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. S.L. Campbell. 2-D (differential-delay) implicit systems. In Proc. IMACS World Congress on Scientific Computation Dublin, 1991, 1828–1829.

    Google Scholar 

  14. S.L. Campbell. A general form for solvable linear time varying singular systems of differential equations. SIAM J. Math. Anal., 18:1101–1115, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.L. Campbell. DAE approximations of PDE modeled control problems. In Proc. IEEE Mediterranean Symposium on New Directions in Control and Automation, Crete, 1994, 407–414.

    Google Scholar 

  16. S.L. Campbell. High index differential algebraic equations. J. Mech. Struct. & Machines, 23:199–222, 1995.

    Article  Google Scholar 

  17. S.L. Campbell. Linearization of DAEs along trajectories. Z. angew Math. Phys. (ZAMP), 46:70–84, 1995.

    Article  MATH  Google Scholar 

  18. S.L. Campbell and C.W. Gear. The index of general nonlinear DAEs. Numerische Mathematik, 72:173–196, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  19. S.L. Campbell and E. Griepentrog. Solvability of general differential algebraic equations. SIAM J. Scientific Computation, 16:257–270, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  20. S.L. Campbell and R. Hollenbeck. Automatic differentiation and implicit differential equations. In Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia, 1996, 215–227.

    Google Scholar 

  21. S.L. Campbell and W. Marszalek. The index of an infinite dimensional implicit system. Mathematical Modelling of Systems, to appear.

    Google Scholar 

  22. S.L. Campbell and E. Moore. Constraint preserving integrators for general nonlinear higher index daes. Numerische Mathematik, 69:383–399, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.L. Campbell and W.J. Terrell. Observability of linear time varying descriptor systems. SIAM J. Matrix Analysis, 12:484–496, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  24. S.L. Campbell and with W.J. Terrell. Determining flatness for complex nonlinear systems. In Proc. IEEE Southeastcon’95, Raleigh, NC, 1995, 118–122.

    Google Scholar 

  25. S.L. Campbell, N.K. Nichols, and W.J. Terrell. Duality, observability, and controllability for linear time varying descriptor systems. Circuits, Systems, Signal Process, 10:455–470, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Caracotsios and W.E. Stewart. Sensitivity analysis of initial-boundary-value problems with mixed PDEs and algebraic equations. Applications to chemical and biochemical systems. preprint, 1994.

    Google Scholar 

  27. J. Chen. On Computing the Maximal Delay Intervals for Stability of Linear Delay Systems. IEEE Trans. on Automatic Control, 40(6): 1087–1093, 1995.

    Article  MATH  Google Scholar 

  28. C.C. Cheah and D. Wang. Learning control for a class of nonlinear differential-algebraic systems with application to constrained robots. In Proc. 94ACC, Baltimore, June, 1994, 1737–1742.

    Google Scholar 

  29. P.D. Christofides and P. Daoutidis. Finite dimensional control of parabolic PDE systems using approximate inertial manifolds. preprint, 1997.

    Google Scholar 

  30. J.E. Cuthrell and L.T. Biegler. On the optimization of differential-algebraic process systems. AIChE Journal, 33:1257–1270, 1987.

    Article  MathSciNet  Google Scholar 

  31. L. Dai. Singular Control Systems. Lecture Notes in Control and Information Sciences, Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  32. S. Diop, J.W. Grizzle, P.E. Moraal, and A. Stefanopoulou. Interpolation and numerical differentiation for observer design. In Proc 94 ACC, 1994, 1329–1333.

    Chapter  Google Scholar 

  33. W.F. Feehery and P.I. Barton. Dynamic simulation and optimization with inequality path constraints. Comp. and Chem Engng., 20:S707–S712, 1996.

    Article  Google Scholar 

  34. W.F. Feehery and P.I. Barton. A differentiation-based approach to dynamic simulation and optimization with high-index differential-algebraic equations. preprint, 1996.

    Google Scholar 

  35. W.F. Feehery, J.R. Banga, and P.I. Barton. A novel approach to dynamic optimization of ODE and DAE systems as high-index problems. AICHE annual meeting, Miami, 1995.

    Google Scholar 

  36. V. Gopal and L.T. Biegler. A Successive linear programming approach for initialization and reinitialization after discontinuities of differential algebraic equations. preprint, 1996.

    Google Scholar 

  37. M. Günther and U. Feldmann. The DAE-index in electric circuit simulation. Mathematics and Computers in Simulation, 39:573–582, 1995.

    Article  MathSciNet  Google Scholar 

  38. E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-algebraic Systems by Runge-Kutta Methods. Springer Lecture Notes in Mathematics No. 1409, 1989.

    MATH  Google Scholar 

  39. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential Algebraic Problems, Springer-Verlag, 1991.

    MATH  Google Scholar 

  40. R.M. Hirschorn and J.H. Davis. Global output tracking for nonlinear systems. SIAM J. Contr. Opt., 26:1321–1330, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Hou, Th. Schmidt, R. Schüpphaus, and P.C. Müller. Normal form and Luenberger Observer for linear mechanical descriptor systems. J. of Dynamic Systems, Measurement, and Control, 115:611–620, 1993.

    Article  MATH  Google Scholar 

  42. K.P. Jankowski and H. Van Brussel. An approach to discrete inverse dynamics control of flexible-joint robots. IEEE Transactions on Robotics & Automation, 8:651–658, 1992.

    Article  Google Scholar 

  43. K.P. Jankowski and H. Van Brussel. Inverse dynamics task control of flexible joint robots-part I: continuous-time approach. Mechanism and Machine Theory, 28:741–750, 1993.

    Article  Google Scholar 

  44. K.P. Jankowski and H. Van Brussel. Inverse dynamics task control of flexible joint robots-part II: discrete-time approach. Mechanism and Machine Theory, 28:751–763, 1993.

    Article  Google Scholar 

  45. S. Kawaji and E.Z. Taha. Feedback linearization of a class of nonlinear descriptor systems. In Proc. 33 IEEE-CDC, 1994, 4035–4042.

    Google Scholar 

  46. J.Y. Keller, S. Nowakowski and M. Darouach, State estimation and failure detection in singular systems. Control-Theory and Advanced Technology, 8(4):755–762, 1992.

    MathSciNet  Google Scholar 

  47. A.J. Krener and A. Isidori. Linearization by output injection and nonlinear observers. Sys. Contr. Letters, 3:47–52, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  48. A.J. Krener and W. Respondek. Nonlinear observers with linearizable error dynamics. SIAM J. Cont. Opt., 23(2):197–216, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Krishnan, Control of Nonlinear Systems with Applications to Constrained Robots and Spacecraft Attitude Stabilization, Ph.D. Thesis, Department of Aerospace Engineering, University of Michigan, 1992.

    Google Scholar 

  50. H. Krishnan and N.H. McClamroch. Computation of state realizations for control systems described by a class of differential-algebraic equations. Int. J. Control, 55:1424–1441, 1992.

    Article  Google Scholar 

  51. A. Kumar and P. Daoutidis. Control of nonlinear differential-algebraic process systems. In Proc. 94 ACC, 1994, 330–334.

    Chapter  Google Scholar 

  52. P. Kunkel and V. Mehrmann. Canonical forms for linear differential-algebraic equations with variable coefficients. J. Comp. Appl. Math., 56:225–251, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Kunkel and V. Mehrmann, Local and global invariants of linear differential-algebraic equations and their relation, Electron. Trans. Numer. Anal., 4:138–157, 1996.

    MathSciNet  MATH  Google Scholar 

  54. P. Kunkel and V. Mehrmann, A new class of discretization methods for the solution of linear differential-algebraic equations with variable coefficients. SIAM J. Numer. Anal., 33:1941–1961, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Kunkel, V. Mehrmann, W. Rath and J. Weickert. A new software package for linear differential-algebraic equations. SIAM J. Sci. Comp., 18:115–138, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  56. F.L. Lewis. A survey of linear singular systems. Circuits Systems & Signal Processing, 5:3–36, 1986.

    Article  MATH  Google Scholar 

  57. F.L. Lewis. Geometric design techniques for observers in singular systems. Automatica, 26:411–415, 1990.

    Article  MATH  Google Scholar 

  58. W. Lucht, K. Strehem, and C. Eichler-Liebenow. Linear partial differential algebraic equations Part I: Indexes, consistent boundary/initial conditions. Report No. 17, Universität Halle, 1997.

    Google Scholar 

  59. W. Lucht, K. Streheml, and C. Eichler-Liebenow. Linear partial differential algebraic equations Part II: Numerical solution. Report No. 18, Universität Halle, 1997.

    Google Scholar 

  60. N.H. McClamroch. Feedback stabilization of control systems described by a class of nonlinear differential-algebraic equations. Systems & Control Letters, 15:53–60, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Martinson and P. Barton. A differential index for partial differential equations. preprint, 1998.

    Google Scholar 

  62. H. Michalska and D. Mayne. Receding horizon control of nonlinear systems without differentiability of the optimal value function. Systems & Control Letters, 16:123–130, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Nikoukhah. A new methodology for observer design and implementation. IEEE Trans. Automatic Control, 43:229–234, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  64. C.C. Pantelides, R.W.H. Sargent, and V.S. Vassiliadis. Optimal Control of Multistage Systems Described by High-Index Differential-Algebraic Equations. Computational Optimal Control, International Series of Numerical Mathematics, Birkhauser Publishers, Basel, 115:177–191, 1994.

    Chapter  Google Scholar 

  65. T. Park and P.I. Barton. State event location in differential-algebraic models. ACM Transactions on Modeling and Computer Simulation, 6:137–165, 1996.

    Article  MATH  Google Scholar 

  66. R. Pytlalk, M.J. Mohideen, and E.N. Pistikopoulos. Numerical procedure for optimal control of differential-algebraic equations. In Proc. Computational Engineering in Systems Applications (CESA96), Lille, France, 1996, 398–402.

    Google Scholar 

  67. P.J. Rabier and W.C. Rheinboldt. Time-dependent linear DAEs with discontinuous inputs. Linear Algebra Appl., 247:1–29, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  68. P.J. Rabier and W.C. Rheinboldt. Discontinuous solutions of semilinear differential-algebraic equations. II. P-consistency. Nonlinear Anal., 27:1257–1280, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. P.J. Rabier and W.C. Rheinboldt. Discontinuous solutions of semilinear differential-algebraic equations I. Distribution solutions. Nonlinear Anal., 27:1241–1256, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  70. P.J. Rabier and W.C. Rheinboldt. Classical and generalized solutions of time-dependent linear differential-algebraic equations. Linear Algebra Appl., 245:259–293, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  71. S. Reich. On the local qualitative behavior of differential-algebraic equations. Circuits Systems & Signal Processing, 14:427–443, 1995.

    Article  MATH  Google Scholar 

  72. W. Respondek and H. Nijmeijer. On local right-invertibility of nonlinear control systems, Control-Theory and Advanced Technology, 4(3):325–348, 1988.

    MathSciNet  Google Scholar 

  73. W.C. Rheinboldt. MANPAK: a set of algorithms for computations on implicitly defined manifolds. Comput. Math. Appl., 32:15–28, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  74. W.C. Rheinboldt. Solving algebraically explicit DAEs with the MANPAK-manifold-algorithms. Comput. Math. Appl., 33:31–43, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  75. P. Rouchon, M. Fliess, J. Lévine, and P. Martin. Flatness, motion planning and trailer systems. In Proc. 32 IEEE-CDC, San Antonio, 1993, 2700–2705.

    Google Scholar 

  76. W.J. Terrell. Output-nulling space, projected dynamics, and system decomposition for linear time varying systems. SIAM J. Control, 32:876–889, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Unger, A. Kröner and W. Marquardt. Structural analysis of Differential-algebraic equation systems — Theory and Applications. Comp. Chem. Eng., 19:867–882, 1995.

    Article  Google Scholar 

  78. P. Van Dooren. The computation of Kronecker’s Canonical Form of a singular pencil. Linear Algebra and its Applications, 27:103–140, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  79. V.S. Vassiliadis, R.W.H. Sargent, and C.C. Pantelides. Solution of a class of multistage dynamic optimization problems 2. problems with path constraints. Ind. Eng. Chem. Res., 33:2123–2133, 1994.

    Article  Google Scholar 

  80. R. von Schwerin, M. Winckler, and V. Schulz. Parameter estimation in discontinuous descriptor systems. preprint.

    Google Scholar 

  81. D. von Wissel, R. Nikoukhah, F. Delebecque, and S.L. Campbell. Numerically generated path stabilizing controllers: use of preliminary feedback. Kybernetika, 6:657–666, 1995.

    Google Scholar 

  82. D. von Wissel, R. Nikoukhah, S.L. Campbell, and F. Delebecque. Nonlinear observer design using implicit system descriptions. In Proc. Computational Engineering in Systems Applications (CESA96), Lille, France, 1996, 404–409.

    Google Scholar 

  83. D. von Wissel, R. Nikoukhah, F. Delebecque, and S.L. Campbell. The effects of computational delay in descriptor based trajectory tracking control. Int. J. Control, 67:251–273, 1997.

    Article  MATH  Google Scholar 

  84. D. von Wissel, DAE Control of Dynamical Systems: Example of a Riderless Bicycle, Docteur Thèse, L’École Nationale Supérieure Des Mines De Paris, 1996.

    Google Scholar 

  85. W. Zhu and L. Petzold, Asymptotic stability of linear delay differential algebraic equations and numerical methods. Applied Numerical Mathematics, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Campbell, S.L., Nikoukhah, R., Delebecque, F. (1999). Nonlinear Descriptor Systems. In: Frank, P.M. (eds) Advances in Control. Springer, London. https://doi.org/10.1007/978-1-4471-0853-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0853-5_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1216-7

  • Online ISBN: 978-1-4471-0853-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics