Towards a Theory of General Discrete Systems

  • J. Gregor
Conference paper

Summary

The main goal of the paper is an attempt to establish a general theory of discrete systems by successive specializations of basic structures. This way the most general conditions of validity of achieved results can be revealed, the scope of applicability can be widened and program of further research activities can be outlined

Keywords

Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarval, R. P., 1992 Difference Equations and Inequalities, N. Y., Hong-Kong.Google Scholar
  2. 2.
    Bos, K. M., Gregor, J., 1987, On generalized difference equations, Apl. Mat., (Prague), Vol.32, No. 3, pp. 224–239.MATHGoogle Scholar
  3. 3.
    Bose, N. K., 1982, Applied Multidimensional Systems Theory, Van Nostrand, N. Y.MATHGoogle Scholar
  4. 4.
    Dudgeon, D. E., Merserau, R. M., 1984, Multidimensional Digital Signal Processing, Prentice Hall Inc., Eng. Cliffs, NJ.MATHGoogle Scholar
  5. 5.
    Elaydi, S. N., 1996, An Introduction to Difference Equations, Springer, N. Y.CrossRefMATHGoogle Scholar
  6. 6.
    Fornasini, E., Rocha, P., Zampieri, S., 1993, State Space Realization of 2-D Finite-Dimensional Behaviours, SIAM Control and Opt., Vol. 31., No. 6., pp. 1502 – 1517.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gregor, J., 1991, Convolutional Solutions of Partial Difference Equations, Math. of Control, Signals and Systems, No. 4, pp. 205 – 215.Google Scholar
  8. 8.
    Gregor, J., 1988, The multidimensional z-transform and its use in solution of partial difference equations, Kybernetika (Prague), Suppl., No. 1, 2, pp. 1 – 40.Google Scholar
  9. 9.
    Gregor, J., 1998, The Cauchy Problem for Partial Difference Equations, Acta Appl. Mathematicae (to appear).Google Scholar
  10. 10.
    Gregor, J., 1997, A Formal Approach to discrete systems Theory, Appl. Math, and Comp.sci., Vol. 7. No. 4, pp.775–795.MathSciNetMATHGoogle Scholar
  11. 11.
    Huang, T. S. (Editor), 1981, Two-Dimensional Digital Signal Processing I, Springer, Berlin.MATHGoogle Scholar
  12. 12.
    Kaczorek, T., 1985, Two-Dimensional Linear Systems, Springer Verlag, Englewood Cliffs.MATHGoogle Scholar
  13. 13.
    Kucera, V., 1991, Analysis and Design of Discrete Linear Control Systems, Prentice Hall, London.Google Scholar
  14. 14.
    Mesarovic, M. D., Takahara, Y., 1975, General Systems Theory: Mathematical Foundations, Academic Press, New York.MATHGoogle Scholar
  15. 15.
    Mesarovic, M. D., Takahara, Y., 1989, Abstract Systems Theory, Springer Verlag, Berlin.CrossRefMATHGoogle Scholar
  16. 16.
    Oberst, U., 1990, Multidimensional Constant Linear Systems, Acta Appl.Math., 20: pp. 1–175.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Veit, J., 1995, Fundamental Solution of a Multidimensional Difference Equation with Periodical and Matrix Coefficients, Aequ. Math., 49: pp. 47 – 56.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Veit, J., 1997, Sub-exponential solutions of multidimensional difference equations, Multidim.Systems and Signal Proc, 8: pp. 369 – 385.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Willems, J. C., 1991, Paradigms and Puzzles in the Theory of Dynamical Systems, IEEE Trans. Aut.Control, Vol. 36, 3: pp. 259 – 294.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zampieri, S., 1994, A Solution of the Cauchy Problem for Multidimensional Discrete Linear Shift-Invariant Systems, Lin.Alg. and its Appl., 202: pp. 143 – 162.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • J. Gregor
    • 1
  1. 1.Dept. of Mathematics, Faculty of Electrical Eng.Czech UniversityPraha 6Czech Republic

Personalised recommendations