Skip to main content

Satellite-to-indoor Propagation Modelling for LEOS Communication Systems

  • Conference paper
Mobile and Personal Satellite Communications 3

Abstract

This paper describes a computer model for the radio wave propagation channel of Low Earth Orbit Satellites (LEOS) communication systems. The model assumes that the user receives the satellite-transmitted signal either in an outdoor or indoor environment. The paper describes the equations of Doppler shift, elevation angle, and distance between satellite and the user at different times. It discusses how the frequency implementation of the Doppler filter in a fading channel can be improved by using a zero-packing technique. It also addresses the fact that delay spread power distribution can be approximated by the square of the ratio between the shortest time delay and the time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dewell, “Mobile satellite trends”, Electronics and Communication Engineering Journal, vol. 9, pp. 58, April, 1997.

    Article  Google Scholar 

  2. N. Rydbeck, S. Chennakeshu, P. Dent, and A. Hassan, “Mobile satellite systems: a perspective on technology and trends”, 1996 IEEE 46th Veh. Technol Conf., 1996.

    Google Scholar 

  3. F. Abrishamkar and Z. Siveski, “PCS global mobile satellites”, IEEE Commun. Mag., 1996.

    Google Scholar 

  4. “Center for Wireless Communications”, in http://www.iridium.com.solut/solut.html, 1997.

  5. D. Otto and S. Schuster, “IRIDIUM-a vision becomes reality”, Telcom Report International 18, pp. 11–13, 1995.

    Google Scholar 

  6. K. Maine, C. Devieux, and P. Swan, “Overview of IRIDIUM satellite network”, WESCON’95,1995.

    Google Scholar 

  7. L. Wood, “Big LEO overview”, in http://www.ee.surrey.ac.uk/personal/L. Wood/constellations/tables/overview.html, 1998.

  8. F. J. Dietrich, P. Metzen, and P. Monte, “The globalstar cellular satellite system”, IEEE Trans. Antennas Propag., vol. 46, pp. 935–942, June, 1998.

    Article  Google Scholar 

  9. Test & Measurement Catalog”: Hewlett Packard, 1997.

    Google Scholar 

  10. W. J. Vogel and J. Goldhirsh, “Multipath fading at L band for low elevation angle, land mobile satellite scenarios”, IEEE J. Sel. Areas Commun., vol. 13, pp. 197–204, February, 1995.

    Article  Google Scholar 

  11. G. C. Hess, “Land-mobile satellite excess path loss measurements”, IEEE Trans. Veh. Technol., pp. 290–297, May, 1980.

    Google Scholar 

  12. M. A. N. Parks, G. Butt, M. J. Willis, and B. G. Evens, “Wideband propagation measurements and results at L- and S-Bands for personal and mobile satellite communications”, Satellite Systems for Mobile Communications and Navigation, 1996.

    Google Scholar 

  13. C. Loo, E. E. Matt, J. S. Butterworth, and M. Dufour, “Measurements and modelling of land-mobile satellite signal statistics”, IEEE Veh. Technol Conf., 1986.

    Google Scholar 

  14. A. F. d. Toledo, D. G. Lewis, and A. M. D. Turkmani, “Radio propagation into buildings at 1.8 GHz”, University Research in Mobile Radio Colloquium: Papers and Programme, pp. 3/1–5,1990.

    Google Scholar 

  15. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems, New York: Plenum Press, 1992.

    Google Scholar 

  16. R. Berangi, P. Leung, and M. M. Zonoozi, “Simulation of a mobile communication system”, Proceedings of Australia MATLAB Conference 1996,1996.

    Google Scholar 

  17. Propagation data required for the design of earth-space telecommunication systems”, Alternative Propagation data required for the design of earth-space telecommunication systems, ITU, Geneva, 564–3, 1986.

    Google Scholar 

  18. W. C. Y. Lee, Mobile Communications Design Fundamentals, New York: John Wiley & Sons, INC., 1993.

    Book  Google Scholar 

  19. M. J. Neve,“Mobile Radio Propagation Prediction in Built-up Environments Using Ray-Methods”, New Zealand. University of Auckland, 1992.

    Google Scholar 

  20. J. Doble, Introduction to Radio Propagation for Fixed and Mobile Communications, Artech House, Inc., 1996.

    Google Scholar 

  21. T. S. Rappaport, Wireless Communications Principles and Practice, New Jersey: Prentice Hall PTR, 1996.

    Google Scholar 

  22. D. Parsons, The Mobile Radio Propagation Channel, Boston: John Willey & SOns, 1992.

    Google Scholar 

  23. A. F. d. Toledo and A. M. D. Turkmani, “Propagation into and within buildings at 900, 1800 and 2300 MHz”, 1992 IEEE 42nd Veh. Tech. Conf., 1992.

    Google Scholar 

  24. S. Dye, “Buildings penetration loss at 900 MHz”, Electrotechnology, 1995.

    Google Scholar 

  25. Y. P. Zhang and Y. Hwang, “Measurements of the characteristics of indoor penetration loss”, 1994 IEEE 44th Vech. Technol Conf., 1994.

    Google Scholar 

  26. D. C. Cox, R. R. Murray, and A. W. Norris, “Measurements of 800 MHz radio transmission into buildings with metallic wall”, The Bell System Techn. J., vol. 62, pp. 2695–2717, November, 1983.

    Google Scholar 

  27. Y. Qi, B. Currie, W. Wang, P. Y. Chung, C. Wu, and J. Litva, “Measurement and simulation of radio wave propagagation in two indoor environments”, IEEE International Syposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 1171–4, 1995.

    Google Scholar 

  28. V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, “The dependence of EM enery absorption upon human head modelling at 900 MHz”, IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1865–1873, October, 1996.

    Article  Google Scholar 

  29. Y. Tang and H. Sobol, “Measurements of PCS microwave propagaiton in buildings”, Applied Microwave and Wireless, vol. 7, pp. 38–58, 1995.

    Google Scholar 

  30. V. A. Chobotv, Obital Mechanics Second Edition, Virginia: American Institude of Aeronautics and Astronautics, Inc., 1996.

    Google Scholar 

  31. S. K. Li,“Modelling of LEO Satellite Communication Channel”,:The Univerisity of Queensland, 1997.

    Google Scholar 

  32. D. Roddy, Satellite Communications, McGrwa-Hill, 1996.

    Google Scholar 

  33. G. D. Gordon and W. L. Morgan, Principles of Communications Satellites, New York: John Wiley & Sons, Inc., 1993.

    Google Scholar 

  34. R. A. Goubran, H. M. Hafez, and A. U. H. Sheikh, “Implementation of a real-time mobile channel simulator using a DSP chip”, IEEE Trans. Instrum. Meas., vol. 40, pp. 709–714, August, 1991.

    Article  Google Scholar 

  35. S. Y. Lien, F. Choy, and M. Cherniakov, “Outdoor-to-indoor propagation modelling for LEO satellite communication systems”, TENCON’97, 1997.

    Google Scholar 

  36. J. I. Smith, “A computer generated multipath fading simulation for mobile radio”, IEEE Trabs. Veh. Technol, vol. 39–40, August, 1975.

    Google Scholar 

  37. H. W. Arnold and W. F. Bodtmann, “A hybrid multichannel hardware simulator for frequency-selective mobile radio paths”, IEEE Trans.commun., vol.COM-31, pp. 370–377, March, 1983.

    Article  Google Scholar 

  38. B. Lovell,“Lecture Notes for E3462 Digital Signal Processing”, in http://www.elec.uq.edu.au/e3462/ppt/lecture.html, 1997.

  39. S. Y. Lien and M. Cherniakov, “Analytical approach for multipath delay spread power distribution”, GLOBECOM’98,1998.

    Google Scholar 

  40. D. C. Cox and R. P. Leek, “Distributions of multipath delay spread and average excess delay for 910-MHz urban mobile radio path”, vol.AP-23, pp. 206–213, March, 1975.

    Google Scholar 

  41. S. Ichitsubo and T. Fujii, “Prediction of mobile radio delay spread from frequency correlations”, vol. 76, pp. 93–104, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Berlin Limited

About this paper

Cite this paper

Lien, S., Cherniakov, M. (1999). Satellite-to-indoor Propagation Modelling for LEOS Communication Systems. In: Ruggieri, M. (eds) Mobile and Personal Satellite Communications 3. Springer, London. https://doi.org/10.1007/978-1-4471-0809-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0809-2_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-045-3

  • Online ISBN: 978-1-4471-0809-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics