Skip to main content

n-3 Polyunsaturated Fatty Acids in the Treatment of Pancreatic Cancer Cachexia

  • Chapter
Book cover Pancreatic Disease

Abstract

Pancreatic adenocarcinoma is the fifth leading cause of cancer death in the Western world with an incidence of about 10/100 000 person-years (1). Over 95% of patients will die of their disease. The 5-year survival rate is 1.3% with a median survival of 4.1 months (2). More than 80% of cancers are irresectable at diagnosis and even in those patients suitable for surgical resection the 5-year survival rate is less than 25% in the best centres (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosewicz S, Weidenmann B (1997) Pancreatic carcinoma. Lancet 349:485–489

    Article  PubMed  CAS  Google Scholar 

  2. Ahlgren JD (1996) Epidemiology and risk factors in pancreatic cancer. Semin Oncol 23:241–250

    PubMed  CAS  Google Scholar 

  3. Neoptolemos JP, Kerr DJ (1995) Adjuvant therapy for pancreatic cancer. Br J Surg 82:1012–1014.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas PRM (1996) Radiotherapy for carcinoma of the pancreas. Semin Oncol 23:213–219

    PubMed  CAS  Google Scholar 

  5. Schnall SF, Macdonald JS. (1996) Chemotherapy of adenocarcinoma of the pancreas. Semin Oncol 23:220–228.

    PubMed  CAS  Google Scholar 

  6. Casper ES, Green MR, Kelsen DP et al. (1994) Phase II trial of gemcitabine (2,2′-difluoro-deoxycytidine) in patients with adenocarcinoma of the pancreas. Invest New Drugs 12:29–34.

    Article  PubMed  CAS  Google Scholar 

  7. Rothenberg ML, Burris HA, Andersen JS et al. (1995) Gemcitabine: effective palliative therapy for pancreas cancer patients failing 5-FU. Proc Am Soc Clin Oncol 14:198

    Google Scholar 

  8. Moore M, Andersen J, Burris H et al. (1995) A randomised trial of gemcitabine versus 5FU as first-line therapy in advanced pancreatic cancer. Proc Am Soc Clin Oncol 14:199

    Google Scholar 

  9. Anonymous (1996) Biotech’s uncertain present. Lancet 347:1497

    Article  Google Scholar 

  10. Carmichael J, Fink U, Russell RCG et al. (1996) Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br J Cancer 73:101–105

    Article  PubMed  CAS  Google Scholar 

  11. Warren S (1935) The immediate causes of death in cancer. Am J Med Sci 184:610–616

    Article  Google Scholar 

  12. DeWys WD, Begg C, Lavin PT et al. (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am J Med 69:491–497

    Article  PubMed  CAS  Google Scholar 

  13. Oveson L, Hannibal J, Mortensen EL (1993) The interrelationship of weight loss, dietary intake, and quality of life in ambulatory patients with cancer of the lung, breast, and ovary. Nutr Cancer 19:159–167.

    Article  Google Scholar 

  14. Wigmore SJ, Plester CE, Ross JA, Fearon KCH (1997) Contribution of anorexia and hypermetabolism to weight loss in anicteric patients with pancreatic cancer. Br J Surg 84:196–197.

    Article  PubMed  CAS  Google Scholar 

  15. Fearon KCH, Carter DC (1988) Cancer cachexia. Ann Surg 208:1–5.

    Article  PubMed  CAS  Google Scholar 

  16. Grunfeld C, Feingold LH (1992) Metabolic disturbances and wasting in the acquired immunodeficiency syndrome. N Engl J Med 327:329–337.

    Article  PubMed  CAS  Google Scholar 

  17. Roubenoff R, Roubenoff RA, Ward LM, Holland SM, Hellman DB (1992) Rheumatoid cachexia: Depletion of lean body mass in rheumatoid arthritis. Possible association with tumor necrosis factor. J Rheumatol 19:1505–1510

    PubMed  CAS  Google Scholar 

  18. Cangiano C, Laviano A, Muscaritoli M, Meguid MM, Cascino A, Fanelli FR (1996) Cancer anorexia: new pathogenic and therapeutic insights. Nutrition 12(Suppl) 1: S48–51.

    PubMed  CAS  Google Scholar 

  19. Falconer JS, Fearon KCH, Plester CE, Ross JA, Carter DC (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219:325–331.

    Article  PubMed  CAS  Google Scholar 

  20. Brennan MF (1977) Uncomplicated starvation versus cancer cachexia. Cancer Res 37:2359–2364.

    PubMed  CAS  Google Scholar 

  21. Chlebowski RT, Heber D, Block JB (1982) Serial assessment of glucose metabolism in patients with cancer cachexia. Clin Res 30.-69A

    Google Scholar 

  22. Edén E, Edstrom S, Bennegárd K, Scherstén T, Lundholm K (1984) Glucose flux in relation to energy expenditure in malnourished patients with and without cancer during periods of fasting and feeding. Cancer Res 44:1718–1724

    PubMed  Google Scholar 

  23. Holroyde CP, Skutches CL, Boden G, Reichard GA (1984) Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res 44:5910–5913

    PubMed  CAS  Google Scholar 

  24. Shaw JHF, Wolfe RR (1987) Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion, parenteral feeding, and surgical resection. Surgery 101:181–191

    PubMed  CAS  Google Scholar 

  25. Jeevanandam M, Horowitz GD, Lowry SF, Brennan MF (1986) Cancer cachexia and the rate of whole body lipolysis in man. Metabolism 35:304–310

    Article  PubMed  CAS  Google Scholar 

  26. Vlassara H, Spiegel RJ, San Doval D, Cerami A (1986) Reduced plasma lipoprotein lipase activity in patients with malignancy-associated weight loss. Horm Metabol Res 18:698–703

    Article  CAS  Google Scholar 

  27. Fearon KCH, Hansell DT, Preston P et al. (1988) Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res 48:2590–2595.

    PubMed  CAS  Google Scholar 

  28. Melville S, McNurlan MA, Calder AG, Garlick PJ (1990) Increased protein turnover despite normal energy metabolism and responses to feeding in patients with lung cancer. Cancer Res 50:1125–1131

    PubMed  CAS  Google Scholar 

  29. Falconer JS, Fearon KCH, Ross JA et al. (1995) Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer 75:2077–2082

    Article  PubMed  CAS  Google Scholar 

  30. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–80

    Article  PubMed  CAS  Google Scholar 

  31. Reeds PJ, Fjeld CR, Jahoor F (1994) Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J Nutr 124:906–910

    PubMed  CAS  Google Scholar 

  32. Michie HR, Spriggs DR, Manogue KR et al. (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104:280–286

    PubMed  CAS  Google Scholar 

  33. Starnes HF, Warren RS, Jeevanandam M et al. (1988) Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 82:1321–1325

    Article  PubMed  CAS  Google Scholar 

  34. Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684

    Article  PubMed  CAS  Google Scholar 

  35. Hellerstein MK, Meydani SN, Meydani M, Wu K, Dinarello CA (1989) Interleukin-1-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest 84:228–235

    Article  PubMed  CAS  Google Scholar 

  36. Espat NJ, Auffenberg T, Rosenberg J J et al. (1996) Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am J Physiol 271: R185-R190.

    PubMed  CAS  Google Scholar 

  37. Aderka D, Engelmann H, Hornik V et al. (1991) Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. Cancer Res 51:5602–5607.

    PubMed  CAS  Google Scholar 

  38. Knapp ML, Al-Sheibani S, Riches PG, Hanham IWF, Phillips RH (1991) Hormonal factors associated with weight loss in patients with advanced breast cancer. Ann Clin Biochem 28:480–486.

    PubMed  Google Scholar 

  39. Kurzrock R, Redman J, Cabanillas F, Jones D, Rothberg J, Talpaz M (1993) Serum interleukin-6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin’s disease and with B symptoms. Cancer Res 53:2118–2122.

    PubMed  CAS  Google Scholar 

  40. Preston T, Fearon KCH, McMillian DC et al. (1995) Effect of ibuprofen on the acute-phase response and protein metabolism in patients with cancer and weight loss. Br J Surg 82:229–234.

    Article  PubMed  CAS  Google Scholar 

  41. Staal-van den Brekel AJ, Dentener MA, Schols AMWJ, Buurman WA, Wouters EFM (1995) Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients. J Clin Oncol 13:2600–2605

    PubMed  CAS  Google Scholar 

  42. Mahoney SM, Beck SA, Tisdale MJ (1988) Comparison of weight loss induced by recombinant tumour necrosis factor with that produced by a cachexia-inducing tumour. Br J Cancer 57:385–389.

    Article  Google Scholar 

  43. Langstein HN, Norton JA (1991) Mechanisms of cancer cachexia. Hematol Oncol Clin North Am 5:103–123

    PubMed  CAS  Google Scholar 

  44. McNamara MJ, Alexander HR, Norton JA (1992) Cytokines and their role in the pathophysiology of cancer cachexia. JPEN J Parenter Enteral Nutr 16(Suppl):50S-55S

    Article  PubMed  CAS  Google Scholar 

  45. Aderka D, Fisher S, Levo Y, Holtmann H, Hahn T, Wallach D (1985) Cachectin/tumour-necrosis-factor production by cancer patients. Lancet 11:1190.

    Article  PubMed  CAS  Google Scholar 

  46. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636

    PubMed  CAS  Google Scholar 

  47. Oldenburg HSA, Rogy MA, Lazarus DD et al. (1993) Cachexia and the acute-phase protein response in inflammation are regulated by interleukin-6. Eur J Immunol 23:1889–1894

    Article  PubMed  CAS  Google Scholar 

  48. O’Riordain MG, Ross JA, Fearon KCH (1995) Insulin and counterregulatory hormones influence acute-phase protein production in human hepatocytes. Am J Physiol 269: E323-E330

    PubMed  Google Scholar 

  49. Gullo L, Ancona D, Pezzilli R, Casadei R, Campione O (1993) Glucose tolerance and insulin secretion in pancreatic cancer. Ital J Gastroenterol 25:487–489.

    PubMed  CAS  Google Scholar 

  50. Schwartz SS, Zeidler A, Moosa AR, Kuku SF, Rubenstein AH (1978) A prospective study of glucose tolerance, insulin, C-peptide, and glucagon responses in patients with pancreatic carcinoma. Dig Dis 23:1107–1114

    Article  CAS  Google Scholar 

  51. Fox JN, Frier BM, Armitage M, Ashby JP (1985) Abnormal insulin secretion in carcinoma of the pancreas: response to glucagon stimulation. Diabetic Med 2:113–116.

    Article  PubMed  CAS  Google Scholar 

  52. Cersosimo E, Pisters PWT, Pesola G, McDermott K, Bajorunas D, Brennan MF (1991) Insulin secretion and action in patients with pancreatic cancer. Cancer 67:486–493

    Article  PubMed  CAS  Google Scholar 

  53. Schaur RJ, Fellier H, Gleispach H, Fink E, Kronberger L (1979) Tumor host relations. I. Increased plasma Cortisol in tumor-bearing humans compared with patients with benign surgical disease. J Cancer Res Clin Oncol 93:281–285

    Article  PubMed  CAS  Google Scholar 

  54. Burt ME, Aoki TT, Gorschboth CM, Brennan MF (1983) Peripheral tissue metabolism in cancer-bearing man. Ann Surg 198:685–691.

    Article  PubMed  CAS  Google Scholar 

  55. Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200:264–281

    Article  PubMed  CAS  Google Scholar 

  56. Watters JM, Bessey PQ, Dinarello CA, Wolff SM, Wilmore DW (1986) Both inflammatory and endocrine mediators stimulate host responses to sepsis. Arch Surg 121:179–190.

    PubMed  CAS  Google Scholar 

  57. Tisdale MJ (1993) Mechanism of lipid mobilisation associated with cancer cachexia: interaction between the polyunsaturated fatty acid, eicosapentaenoic acid, and inhibitory guanine nucleotide-regulatory protein. Prostaglandins Leukot Essent Fatty Acids 48:105–109.

    Article  PubMed  CAS  Google Scholar 

  58. McDevitt TM, Todorov PT, Beck SA, Khan SH, Tisdale MJ (1995) Purification and characterisation of a lipid-mobilising factor associated with cachexia-inducing tumors in mice and humans. Cancer Res 55:1458–1463.

    PubMed  CAS  Google Scholar 

  59. Todorov P, Cariuk P, McDevitt T, Coles B, Fearon K, Tisdale M (1996) Characterisation of a cancer cachectic factor. Nature 379:739–742.

    Article  PubMed  CAS  Google Scholar 

  60. Grunfeld C, Zhao C, Fuller J, Pollock A, Moser A, Freidman J, Feingold KR (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. A role for leptin in the anorexia of infection. J Clin Invest 97:2152–2157

    Article  PubMed  CAS  Google Scholar 

  61. Schwarz M (1997) Proc Nutr Soc (in press)

    Google Scholar 

  62. Nixon DW, Lawson DH, Kutner M et al. (1981) Hyperalimentation of the cancer patient with protein-calorie undernutrition. Cancer Res 41:2038–2045.

    PubMed  CAS  Google Scholar 

  63. Cohn SH, Vartsky D, Vaswani AN et al. (1982) Changes in body composition of cancer patients following combined nutritional support. Nutr Cancer 4:107–119.

    Article  PubMed  CAS  Google Scholar 

  64. Evans WK, Makuch R, Clamon GH et al. (1985) Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res 45:3347–3353.

    PubMed  CAS  Google Scholar 

  65. Klein S, Simes J, Blackburn GL (1986) Total parenteral nutrition and cancer clinical trials. Cancer 58:1378–1386.

    Article  PubMed  CAS  Google Scholar 

  66. Lipman TO (1991) Clinical trials of nutritional support in cancer. Parenteral and enteral therapy. Hematol Oncol Clin North Am 5:91–102.

    PubMed  CAS  Google Scholar 

  67. Ng E-H, Lowry SF (1991) Nutritional support and cancer cachexia. Evolving concepts of mechanisms and adjunctive therapies. Hematol Oncol Clin North Am 5:161–184.

    PubMed  CAS  Google Scholar 

  68. Oveson L, Allingstrup L, Hannibal J, Mortensen EL, Hansen OP (1993) Effect of dietary counseling on food intake, body weight, response rate, survival, and quality of life in cancer patients undergoing chemotherapy: a prospective, randomised study. J Clin Oncol 11:2043–2049.

    Google Scholar 

  69. Chlebowski RT, Bulcavage L, Grosvenor M et al. (1987) Hydrazine sulphate in cancer patients with weight loss. A placebo-controlled clinical experience. Cancer 59:406–410.

    Article  PubMed  CAS  Google Scholar 

  70. McMillan DN, Simpson JM, Preston T et al. (1994) Effect of megestrol acetate on weight loss, body composition and blood screen of gastrointestinal cancer patients. Clin Nutr 13:85–89.

    Article  PubMed  CAS  Google Scholar 

  71. Nelson KA, Walsh D, Sheehan FA (1994) The cancer anorexia-cachexia syndrome. J Clin Oncol 12:213–225.

    PubMed  CAS  Google Scholar 

  72. Gebbia V, Testa A, Gebbia N (1996) Prospective randomised trial of two dose levels of megestrol acetate in the management of anorexia-cachexia syndrome in patients with metastatic cancer. Br J Cancer 73:1576–1580.

    Article  PubMed  CAS  Google Scholar 

  73. Simons JPFHA, Aaronson NK, Vansteenkiste JF et al. (1996) Effects of medroxyprogesterone acetate on appetite, weight, and quality of life in advanced-stage non-hormone-sensitive cancer: A placebo-controlled multicenter study. J Clin Oncol 14:1077–1084.

    PubMed  CAS  Google Scholar 

  74. Beck SA, Tisdale MJ (1989) Effect of insulin on weight loss and tumour growth in a cachexia model. Br J Cancer 59:677–681.

    Article  PubMed  CAS  Google Scholar 

  75. Beck SA, Tisdale MJ (1990) Effect of megestrol acetate on weight loss induced by tumour necrosis factor a and a cachexia-inducing tumour (MAC16) in NMRI mice. Br J Cancer 62:420–424.

    Article  PubMed  CAS  Google Scholar 

  76. Leaf A, Weber PC (1988) Cardiovascular effects of n-3 fatty acids. N Engl J Med 318:549–557.

    Article  PubMed  CAS  Google Scholar 

  77. Nordoy A, Dyerberg J (1989) n-3 fatty acids in health and disease. J Intern Med 225(Suppl 1): l–3.

    Article  Google Scholar 

  78. Neilsen NH, Hansen JPH (1980) Breast cancer in Greenland: selected epidemiological, clinical, and histological features. J Cancer Res Clin Oncol 98:287–299.

    Article  Google Scholar 

  79. Anonymous (1983) Eskimo diets and diseases. Lancet 1:1139–1141.

    Google Scholar 

  80. Dyerberg J, Bang HO, Hjorne N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28:958–966.

    PubMed  CAS  Google Scholar 

  81. Bang HO, Dyerberg J, Hjørne N (1976) The composition of food consumed by Greenland Eskimos. Acta Med Scand 200:69–73.

    Article  PubMed  CAS  Google Scholar 

  82. Bull NL, Day MJL, Burt R, Buss DH (1983) Individual fatty acids in the British household food supply. Hum Nutr: Appl Nutr 37A:373–377.

    Google Scholar 

  83. Lorenz R, Weber PC, Szimnau P, Heldwein W, Strasser T, Loeschke K (1989) Supplementation with n-3 fatty acids from fish oil in chronic inflammatory bowel disease: a randomised, placebo-controlled, double-blind, cross-over trial. J Intern Med 225(Suppl 1):225–232.

    Google Scholar 

  84. Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M (1996) Effect of an enteric-, coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 334:1557–1560.

    Article  PubMed  CAS  Google Scholar 

  85. Lau CS, Morley KD, Belch JJF (1993) Effects of fish oil supplementation on non-steroidal antiinflammatory drug requirement in patients with mild rheumatoid arthritis: a double-blind placebo controlled study. Br J Rheumatol 32:982–989.

    Article  PubMed  CAS  Google Scholar 

  86. Arm JP, Horton CE, Eiser NM, Clark TJH, Lee TH (1988) The effects of dietary supplementation with fish oil on asthmatic responses to antigen. J Allergy Clin Immunol 81:183.

    Article  Google Scholar 

  87. Bjorneboe A, S0yland E, Bjorneboe G-EA, Rajka G, Drevon CA (1989) Effects of n-3 fatty acid supplement to patients with atopic dermatitis. J Intern Med 225(Suppl 1):233–236.

    Google Scholar 

  88. Bittiner SB, Tucker WFG, Cartwright I, Bleehen SS (1988) A double-blind randomised, placebo-controlled trial of fish oil in psoriasis. Lancet 1:378–380.

    Article  PubMed  CAS  Google Scholar 

  89. Johnson JA, Griswold JA, Muakkassa FF (1993) Essential fatty acids influence survival in sepsis. J Trauma 35:128–131.

    Article  PubMed  CAS  Google Scholar 

  90. Kenler AS, Swails WS, Driscoll DF et al. (1996) Early enteral feeding in postsurgical cancer patients. Fish oil structured lipid-based polymeric formula versus a standard polymeric formula. Ann Surg 223:316–333.

    Article  PubMed  CAS  Google Scholar 

  91. van der Heide JJH, Bilo HJG, Donker JM, Wilmink JM, Tegzess AM (1993) Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants. N Engl J Med 329:769–773.

    Article  PubMed  Google Scholar 

  92. Laugharne JD, Mellor JE, Peet M (1996) Fatty acids and schizophrenia. Lipids 31 (Suppl): S163-S165

    Article  PubMed  CAS  Google Scholar 

  93. Fischer S, Weber PC. Thromboxane A3 (TXA3) is formed in human platelets after dietary eicosapentaenoic acid (C20:5w3) (1983) Biochem Biophys Res Commun 116:1091–1099

    Article  PubMed  CAS  Google Scholar 

  94. Lee TH, Hoover RL, Williams JD et al. (1985) Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 312:1217–1224.

    Article  PubMed  CAS  Google Scholar 

  95. Fitzgerald GA, Braden G, Fitzgerald DJ, Knapp HR (1989) Fish oils in cardiovascular disease. J Intern Med 225 Suppl 1:25–29.

    Google Scholar 

  96. Schmitt EB, Dyerberg J (1989) n-3 fatty acids and leukocytes. J Intern Med 225 (Suppl 1):151—158

    Google Scholar 

  97. Endres S, Ghorbani R, Kelley VE et al. (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271.

    Article  PubMed  CAS  Google Scholar 

  98. Meydani SN, Lichtenstein AH, Cornwall S et al. (1993) Immunological effects of National Cholesterol Education Panel Step-2 diets with and without fish-derived n-3 fatty acid enrichment. J Clin Invest 92:105–113.

    Article  PubMed  CAS  Google Scholar 

  99. Cooper AL, Gibbons L, Horan MA, Little RA, Rothwell NJ (1993) Effect of dietary fish oil supplementation on fever and cytokine production in human volunteers. Clin Nutr 12:321–328.

    Article  PubMed  CAS  Google Scholar 

  100. Calder PC (1996) Immunomodulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Proc Nutr Soc 55:737–774.

    Article  PubMed  CAS  Google Scholar 

  101. Alam SQ, Ren Y-F, Alam BS (1988) (3H) forskolin- and (3H) dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils. Lipids 23:207–213

    Article  PubMed  CAS  Google Scholar 

  102. Ballou LR, Cheung WY (1985) Inhibition of human platelet phospholipase A2 activity by unsaturated fatty acids. Proc Natl Acad Sci USA 82:371–375.

    Article  PubMed  CAS  Google Scholar 

  103. Speizer LA, Watson MJ, Brunton LL (1991) Differential effects of omega-3 fish oils on protein kinase activities in vitro. Am J Physiol 261: E109–E114.

    PubMed  CAS  Google Scholar 

  104. Holian O, Nelson R (1992) Action of long-chain fatty acids on protein kinase C activity: comparison of omega-6 and omega-3 fatty acids. Anticancer Res 12:975–980.

    PubMed  CAS  Google Scholar 

  105. Kang JX, Leaf A (1996) Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proc Natl Acad Sci USA 93:3542–3546.

    Article  PubMed  CAS  Google Scholar 

  106. Vallette G, Vanet A, Sumida C, Nunez EA (1991) Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors. Endocrinology 129:1363–1369.

    Article  PubMed  CAS  Google Scholar 

  107. Sumida C, Vallette G, Nunez EA (1993) Interaction of unsaturated fatty acids with rat liver glucocorticoid receptors: studies to localise the site of interaction. Acta Endocrinol 129:348–355.

    PubMed  CAS  Google Scholar 

  108. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164.

    Article  PubMed  CAS  Google Scholar 

  109. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARa-leukotriene B4 pathway to inflammation control. Nature 384:39–43.

    Article  PubMed  CAS  Google Scholar 

  110. Bégin ME, Ells G, Das UN, Horrobin DF (1986) Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 77:1053–1062.

    PubMed  Google Scholar 

  111. Falconer JS, Ross JA, Fearon KCH, Hawkins RA, O’Riordain MG, Carter DC (1994) Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Br J Cancer 69:826–832.

    Article  PubMed  CAS  Google Scholar 

  112. McMillan DN, Murray A, Noble BS, Purasiri P, Heys SD, Eremin O (1994) Differential responses of human solid tumour cells in vitro to essential fatty acids. Eur J Surg Oncol 20:104–105.

    Google Scholar 

  113. Mengeaud V, Nano JL, Fournel S, Rampal P (1992) Effects of eicosapentaenoic acid, gamma-linolenic acid and prostaglandin El on three human colon carcinoma cell lines. Prostaglandins Leukot Essent Fatty Acids 47:313–319.

    Article  PubMed  CAS  Google Scholar 

  114. Lai PBS, Ross JA, Fearon KCH, Anderson JD, Carter DC (1996) Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer 74:1375–1383.

    Article  PubMed  CAS  Google Scholar 

  115. Bégin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumour cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80:188–194.

    Article  PubMed  Google Scholar 

  116. Karmali RA, Reichel P, Cohen LA, Terano T, Hirai A, Tamura Y, Yoshida S (1987) The effects of dietary w-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res 7:1173–1180.

    PubMed  CAS  Google Scholar 

  117. Pritchard GA, Jones DL, Mansel RE (1989) Lipids in breast carcinogenesis. Br J Surg 76:1069–1073.

    Article  PubMed  CAS  Google Scholar 

  118. Gonzalez MJ, Schemmel RA, Gray JI, Dugan L, Sheffield LG, Welsch CW (1991) Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 12:1231–1235.

    Article  PubMed  CAS  Google Scholar 

  119. Gonzalez MJ, Schemmel RA, Dugan L, Gray JI, Welsch CW (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids 28:827–832.

    Article  PubMed  CAS  Google Scholar 

  120. Rose DP, Connolly JM (1993) Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst 85:1743–1747.

    Article  PubMed  CAS  Google Scholar 

  121. Rose DP, Connolly JM, Rayburn J, Coleman M (1995) Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 87:587–592.

    Article  PubMed  CAS  Google Scholar 

  122. Hardman WE, Barnes CJ, Grant W, Knight CW, Cameron IL (1995) A high fish oil diet supplemented with ferric citrate safely inhibits primary and metastatic human breast carcinoma growth in nude mice. Proc Am Assoc Cancer Res 36:114.

    Google Scholar 

  123. Sakaguchi M, Imray C, Davis A et al. (1990) Effects of dietary n-3 and saturated fats on growth rates of the human colonic cancer cell lines SW-620 and LS 174T in vivo in relation to tissue and plasma lipids. Anticancer Res 10:1763–1768.

    PubMed  CAS  Google Scholar 

  124. Sakaguchi M, Rowley S, Kane N et al. (1990) Reduced tumour growth of the human colonic cancer cell lines COLO-320 and HT-29 in vivo by dietary n-3 lipids. Br J Cancer 62:742–747.

    Article  PubMed  CAS  Google Scholar 

  125. de Bravo MG, de Antueno RJ, Toledo J, De Tomás ME, Mercuri OF, Quintans C (1991) Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids 26:866–870.

    Article  PubMed  Google Scholar 

  126. Maehle L, Eilertsen E, Mollerup S, Schønberg S, Krokan HE, Haugaen A (1995) Effects of n-3 fatty acids during neoplastic progression and comparison of in vitro and in vivo sensitivity of two human tumour cell lines. Br J Cancer 71:691–696.

    Article  PubMed  CAS  Google Scholar 

  127. Connolly JM, Rose DP (1996) Suppression of human breast cancer metastases by dietary eicosapentaenoic acid fed as neoadjuvant therapy to nude mice. Proc Am Assoc Cancer Res 37:71.

    Google Scholar 

  128. Bibby MC, Double JA, Ali SA, Fearon KCH, Brennan RA, Tisdale MJ (1987) Characterisation of a transplantable adenocarcinoma of the mouse colon producing cachexia in recipient animals. J Natl Cancer Inst 78:539–546.

    PubMed  CAS  Google Scholar 

  129. Tisdale MJ, Dhesi JK (1990) Inhibition of weight loss by w-3 fatty acids in an experimental cachexia model. Cancer Res 50:5022–5026.

    PubMed  CAS  Google Scholar 

  130. Tisdale MJ, Beck SA (1991) Inhibition of tumour-induced lipolysis in vitro and cachexia and tumour growth in vivo by eicosapentaenoic acid. Biochem Pharmacol 41:103–107.

    Article  PubMed  CAS  Google Scholar 

  131. Beck SA, Smith KL, Tisdale MJ (1991) Anticachectic and antitumour effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res 51:6089–6093.

    PubMed  CAS  Google Scholar 

  132. Hudson EA, Beck SA, Tisdale MJ (1993) Kinetics of the inhibition of tumour growth in mice by eicosapentaenoic acid-reversal by linoleic acid. Biochem Pharmachol 45:2189–2194.

    Article  CAS  Google Scholar 

  133. Hudson EA, Tisdale MJ (1994) Comparison of the effectiveness of eicosapentaenoic acid administered as either the free acid or ethyl ester as an anticachectic and antitumour agent. Prostaglandins Leukot Essent Fatty Acids 51:141–145.

    Article  PubMed  CAS  Google Scholar 

  134. Ohira T, Nishio K, Ohe Y et al. (1996) Improvement by eicosanoids in cancer cachexia induced by LLC-IL6 transplantation. Cancer Res Clin Oncol 122:711–715.

    Article  CAS  Google Scholar 

  135. Takahashi M, Przetakiewicz M, Ong A, Borek C, Lowenstein JM (1992) Effect of co3 and co6 fatty acids on transformation of cultured cells by irradiation and transfection. Cancer Res 52:154–162.

    PubMed  CAS  Google Scholar 

  136. Abou-El-Ela SH, Prasse KW, Carroll R, Wade AE, Dharwadkar S, Bunce OR (1988) Eicosanoid synthesis in 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in Sprague-Dawley rats fed primrose oil, menhaden oil or corn oil diet. Lipids 23:948–954.

    Article  PubMed  CAS  Google Scholar 

  137. Reddy BS, Sugie S (1988) Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res 48:6642–6647.

    PubMed  CAS  Google Scholar 

  138. Karmali RA, Chao C-C, Basu A, Modak M (1989) II. Effect of n-3 and n-6 fatty acids on mammary H-ras expression and PGE2 levels in DMBA-treated rats. Anticancer Res 9:1169–1174.

    PubMed  CAS  Google Scholar 

  139. Kaizer L, Boyd NF, Kriukov V, Trichler D (1989) Fish consumption and breast cancer risk: An ecological study. Nutr Cancer 12:61–68.

    Article  PubMed  CAS  Google Scholar 

  140. Sasaki S, Horacsek M, Kesteloot H (1993) An ecological study of the relationship between dietary fat intake and breast cancer mortality. Prev Med 22:187–202.

    Article  PubMed  CAS  Google Scholar 

  141. Caygill CPJ, Charlett A, Hill MJ (1996) Fat, fish, fish oil and cancer. Br J Cancer 74:159–164.

    Article  PubMed  CAS  Google Scholar 

  142. Sardesai VM (1992) The essential fatty acids. Nutr Clin Pract 7:179–186.

    Article  PubMed  CAS  Google Scholar 

  143. von Schacky C, Weber PC (1985) Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. J Clin Invest 76:2446–2450.

    Article  Google Scholar 

  144. Holroyde CP, Skutches CL, Reichard GA (1988) Effects of dietary enrichment with n-3 polyunsaturated fatty acids in metastatic breast cancer. Proc Am Soc Clin Oncol 7:42.

    Google Scholar 

  145. Anti M, Armeiao F, Marra G et al. (1994) Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterol 107:1709–1718.

    CAS  Google Scholar 

  146. Wigmore SJ, Ross JA, Falconer JS et al. (1996) The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition 12(Suppl): S27–S30.

    PubMed  CAS  Google Scholar 

  147. Wigmore SJ, Ross JA, Barber MD, Fearon KCH (1997) Phase II trial of high purity eicosapentaenoic acid in patients with pancreatic cancer cachexia. Proc Nutr Soc (in press)

    Google Scholar 

  148. Wigmore SJ, Fearon KCH, Ross JA, Carter DC (1996) Eicosapentaenoic acid, cytokines and the acute-phase protein response in pancreatic cancer. Br J Surg 83:1649–1650.

    Google Scholar 

  149. Wigmore SJ, Fearon KCH, Maingay JP, Ross JA (1997) Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sei 92:215–221.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

Barber, M.D., Ross, J.A., Fearon, K.C.H. (1999). n-3 Polyunsaturated Fatty Acids in the Treatment of Pancreatic Cancer Cachexia. In: Johnson, C.D., Imrie, C.W. (eds) Pancreatic Disease. Springer, London. https://doi.org/10.1007/978-1-4471-0801-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0801-6_29

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1205-1

  • Online ISBN: 978-1-4471-0801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics